

Acoustic Field Around a Transonic Cavity Flow

Gaëtan Loupy and George Barakos

CFD Laboratory School of Engineering University of Glasgow James Watt South Building G12 8QQ, Glasgow George.barakos@glasgow.ac.uk

CEAA - Svetlogorsk (Russia) – 21/24 September 2016

Cavity Flow

- Weapon bay are used in modern aircraft:
 - UCAV.
 - F-35.
- Complex cavity flow physics:
 - Feedback loop.
 - Rossiter modes.
 - CFD needs LES, DES, SAS for this flow.
- Cavity flows are characterized by:
 - Large unsteadiness.
 - High levels of noise.
 - Complex waves/shear layer interactions.
- Leading to:
 - Structure fatigue.
 - Stealth reduction.
 - Store release variability.

Boeing X-45 Weapon Bay.

Schilieren image of a cavity flow at M=0.85. DES simulation.

Noise Analysis

- Tools commonly used for cavity flows:
 - Sound Pressure Levels (SPL)
 - Overall Sound Pressure Levels (OASPL)
- Drawbacks:
 - Applicable in wind tunnel test to a limited number of probe points.
 - The temporal fluctuations are not know.
- Application of two more advanced noise field analysis:

The **beamforming**: analysis of the **entire noise field** with a **microphone array**.

The **wavelet transform:** spatio-temporal analysis of the noise.

CFD Solver – Core HMB3 Features

Control volume method

🚮 University

Glasgow

- Parallel Shared and Distributed memory
- Multi-block structured grids Complex geometries
- Fully-Implicit time marching / Frequency domain
- Osher, Roe, AUSM+/UP schemes for all Mach numbers
- **MUSCL** scheme for formally 3rd order accuracy
- Central differences for viscous fluxes
- Krylov subspace linear solver with pre-conditioning
- RANS, URANS, LES, DES, SAS, turbulence and transition models
- Actuator Disk method
- Blade Actuation, Aeroelasticity , Rotor Trimming
- Moving/Deforming grids, Sliding Planes, Overset
- Steady Hover formulation, Unsteady Wind-tunnel and Vehicle formulations
- Adjoint Method for computing aerodynamic derivatives
- Validation Database
- Utilities for processing data, structural models etc.
- Used by Academics and Engineers

Cavity Computations with HMB

- Key journal papers:
 - Babu, S.V., Loupy, G.J.M., Dehaeze, F., Barakos, G.N., Taylor, N.J., *Aeroelastic simulations of stores in weapon bays using Detached-Eddy Simulation*, (2016) Journal of Fluids and Structures, 66, pp. 207-228.
 - Babu, S.V., Zografakis, G., Barakos, G.N., Evaluation of scale-adaptive simulations for transonic cavity flows, (2015) Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 130, pp. 433-444.
 - Lawson, S.J., Barakos, G.N. Computational fluid dynamics analyses of flow over weapons-bay geometries, (2010) *Journal of Aircraft*, 47 (5), pp. 1605-1623.
 - Lawson, S.J., Barakos, G.N. Evaluation of des for weapons bays in UCAVs, (2010) Aerospace Science and Technology, 14 (6), pp. 397-414.
 - Nayyar, P., Barakos, G.N., Badcock, K.J. Numerical study of transonic cavity flows using large-eddy and detached-eddy simulation (2007) *Aeronautical Journal*, 111 (1117), pp. 153-164.
 - S.J. Lawson and G.N. Barakos. Review of Numerical Simulations For High-Speed, Turbulent Cavity Flows. *Progress in Aerospace Sciences*, 47(3):186–216, 2011.
 - HMB is validated for cavity flows.

Geometry & Conditions

- Idealised clean cavity:
 - L=3,59m
 - L/D=7
 - W/D=2

- M=0.85
- Re_L=6.5million
- SAS k-ω
- dt=1% of bay crossing time
- 34 millions cells

Beamforming Analysis

- Multi-spiral distribution.
- 101 sensors.
- 2 and 4 cavity depth from shear layer
- A grid of discrete points in space is scanned.

Beamforming Analysis

- Delay and Sum Beamforming:
 - For each of the *m* sensors a time delay Δ_m from the source and a reference sensor (0) is calculated:

$$\Delta_m \triangleq \frac{r_m - r_0}{c}$$

• The beamformer output is given by $Z(\omega)$:

$$Z(\omega) = \mathcal{F}\left\{\sum_{m=0}^{M-1} y_m(t - \Delta_m)\right\} = \sum_{m=0}^{M-1} Y_\omega e^{-j\Delta_m\omega}.$$

 $y_m(t)$ is the signal from each sensor.

- The accuracy of the result depends on the distances computation:
 - Hypothesis on wave propagation.

Distances computation with a planar waves propagation.

Computation of Distances

BISPL for fixed doors at 110 degrees.

Beamforming for fixed doors at 110 degrees using the arrays 2 and 4.

- Planar wave propagation:
 - No matching with the BISPL.
 - This hypothesis is not valid.
- The velocity flowfield has to be taken into account:
 - Freestream at M0.85
 - The waves are transported.

Computation of Distances

- 1. The **path** from a **scan point to a microphone** is computed taking into account the **flowfield**.
- 2. The wave travel on a distance d_{travel} at a mean velocity c_{travel} .
- 3. The **equivalent distance** at a speed c is: $r_m = d_{travel}$

Array Position

- Array 2 is too close to the cavity:
 - The shear layer is not captured.
- Array 4 has better result:
 - The shear layer is captured.
 - The middle source is not correctly localised.
- Arrays 2 and 4:
 - The two shear layer sources agree with the BISPL.
 - The combination give a better vertical accuracy.

propagation model. (Doors 110 degrees)

Wavelet Transform

- A spectral decomposition of a signal shows what are the main frequencies but does not show when they appear.
- The Wavelet Transform shows the distribution of the energy in the frequencies at every instance in time.
- Give the **spatio-temporal fluctuations** of the pressure field.

Cavity Flow Pressure Fluctuations

- Nodes and antinodes.
- Phase opposition between two antinodes.
- Cavity flow tones are produced by standing waves

BIW at the cavity ceiling for the store at carriage.

Cavity Flow Pressure Modulations

- BIW envelop show the peaks amplitude.
- The nodes and antinodes are more visible.
- The standing waves are modulated in time.

BIW envelop at the cavity ceiling for the doors at 110 degree.

M219 Pressure Fluctuations

M219 Cavity experiments by Nightingale et al.

CEAA – Svetlogorsk (Russia) – 21/24 September 2016

Cavity flow establishment during opening (220 deg/s). Mach Number and LICs at centreplan.

[1] Chappell, P. and Gilbey, R. W., "Drag of a rectangular planform cavity in a flat plate with a trubulent boundary layer for Mach numbers up to 3. Part II: Open and transitional flows." Tech. rep., February 2002.

3. Shear layer development:

Open cavity flow.

Cavity Flow Door Opening

- The wavelet is able to **track transitory state** of the opening:
 - The travel of the jet is visible during transition.
 - The different door velocities show different transition strength.

Spatio-temporal fluctuations along the cavity ceiling of the cavity opening.

Cavity Flow Door Opening

- The mode 1 is **trigged by the transition**.
- The modes 2 and 3 noticeably increase from 70 degrees.
 - Pacifying effect of the doors for small angle.

Spatio-temporal fluctuations along the cavity ceiling of the cavity opening (220 deg/s) for modes 1 to 3.

Noise Propagation

Summary and Conclusion

- Beamforming:
 - The mean flowfield has to be taken into account to be accurate.
 - Able to localise the main sources of noise at the shear layer.
 - Captures the mode shapes.
 - Applicable to wind tunnel with PIV measurements.
- Wavelet transform:
 - Extracts the **spatio-temporal** fluctuations of the noise.
 - Exhibits a standing wave like behaviour for shallow cavity flow.
 - Tracks the noise fluctuations of unsteady phases of cavity flow.
- Noise propagation:
 - The flowfield has large influence on the noise propagation.
 - A large part of the noise radiate over the second half of the cavity.

