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TOWARDS AFFORDABLE CAA SIMULATIONS OF 

AIRLINER’S WINGS WITH HIGH-LITF DEVICES 

V. Bobkov, A. Gorobets, A. Duben, T. Kozubskaya,V. Tsvetkova 
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Vortex-resolving CAA simulations of aircrafts 

Colorful Coarse Crap 

Underresolved simulations 

Generation of fancy 

nonsense movies and images 

Extra-massive burning out of CPU time  

Simulation of an airplane 

which costs like an airplane 
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Vortex-resolving CAA simulations of aircrafts 

●  Cheap and accurate numerical methods  

    numerical schemes, turbulence models, … 

●  Efficient HPC implementations 

    scalable parallel algorithms, heterogeneous computing, …  

●  Efficient simulation technology 

    mesh adaptation, acceleration of SSS, postprocessing, …   
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Cheap and accurate numerical methods: EBR schemes 

Basic low-order scheme 

3D 2D 

Control volume 

Bakhvalov, P.A. & Kozubskaya, T.K. Comput. Math. and Math. Phys. (2017) 57: 680.  

https://www.doi.org/10.1134/S0965542517040030  
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3D 2D 

EBR3-WENO scheme 
Control volume 

Bakhvalov, P.A. & Kozubskaya, T.K. Comput. Math. and Math. Phys. (2017) 57: 680.  

https://www.doi.org/10.1134/S0965542517040030  

Cheap and accurate numerical methods: EBR schemes 
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3D 2D 

EBR5-HYB scheme Control volume 

Just +15% computing cost compared to low-order scheme 

Up to 6-th order of accuracy (on translationally invariant meshes)   

Bakhvalov, P.A. & Kozubskaya, T.K. Comput. Math. and Math. Phys. (2017) 57: 680.  

https://www.doi.org/10.1134/S0965542517040030  

Cheap and accurate numerical methods: EBR schemes 
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Efficient HPC implementations 

Multilevel MPI+OpenMP parallelization 

Upper level domain decomposition, MPI   

Intra-node domain decomposition, OpenMP   

13M nodes 

160M nodes 

Gorobets, A. Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations. 

Lobachevskii J Math (2018) 39: 524. https://doi.org/10.1134/S1995080218040078  
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Efficient HPC implementations 

200 

150 

100 

50 

250 

300 

350 

GFLOPS 

Intel Xeon 

E5-2690 

8 cores 

51GB/s 

0.2TF 

Intel Xeon 

Phi 7110X 

61 cores 

352GB/s 

1.2TF 

NVIDIA 

Tesla 

2090 

178 GB/s 

0.67TF 

NVIDIA 

Tesla 

K40 

288GB/s 

1.5TF 

AMD 

FirePro 

9150 

320 GB/s 

2.5TF 

AMD 

Radeon R9  

Nano 

512 GB/s 

0.5 TF 

Intel Xeon 

E5-2697v3 

14 cores 

68 GB/s 

0.29TF 

Intel Xeon 

Phi 7290 

72 cores 

400GB/s 

3.4TF 

NVIDIA 

Tesla 

V100 

900GB/s 

7TF 

Portable OpenCL implementations 

Intel Xeon 

8160 

24 cores 

120 GB/s 

1.6TF 

 

A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of  

hybrid supercomputers. Computers&Fluids. (2018) 173:171. https://doi.org/10.1016/j.compfluid.2018.03.011  
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A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of  

hybrid supercomputers. Computers&Fluids. (2018) 173:171. https://doi.org/10.1016/j.compfluid.2018.03.011  

OpenMP outer region 

OpenCL OpenMP inner 

Efficient HPC implementations 

Heterogeneous execution scheme 

DMA, overlap, workload-balancing, autotuning   

 

OpenMP inner 
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Efficient HPC implementations 

Heterogeneous computing – MPI+OpenMP+OpenCL 

Lomonosov-2 nodes: 14c Xeon E5 v3 + K40M 

A.Gorobets, S.Soukov, P.Bogdanov. Multilevel parallelization for simulating turbulent flows on most kinds of  

hybrid supercomputers. Computers&Fluids. (2018) 173:171. https://doi.org/10.1016/j.compfluid.2018.03.011  
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Airframe noise prediction 
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CAA simulation of a swept wing of an airliner 

Whole-wing  

with DES resolution 

expensive 

accurate  

Small section  

with DES resolution 

cheap 

inaccurate 

Whole wing with RANS resolution,  

Small section with DES resolution 

cheap 

not so inaccurate 

High-resolution zone, DES  

Transition zone 

           sponge layer  

       
RANS zone 
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30P30N model configuration, AOA 5.5° 

Model problem to study 

mesh resolution, 

time integration periods, 

zonal approach 

Periodic  

Boundary  

Conditions 

2D base mesh is extruded  

in the spanwise direction 

2D base  

mesh 
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Resolution zones 

Coarsening zone 

Acoustic resolution zone 

Turbulence resolution zone 

K-H resolution  zone 

BL resolution 

zone 
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Instantaneous flow within zones  
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Permeable FW/H surface – as close as possible 
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Another nonsense animation 
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Another nonsense animation 



20 

Instantaneous flow field 

Code Model Mesh Nc (millions) Lz 

CFL3D DDES Struct 73.2 c/9 

ElaN3D DDES Struct 25 c/30 

Star-CCM+ IDDES Unstruct 73 c/9 

OVERFLOW DDES Struct 73.2 c/9 

NOISEtte  IDDES Unstruct 34 c/9 



21 

Spectra at surface 
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Far field 

Permeable surface 

Slat solid surface 
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Mesh coarsening – instantaneous fields 

34M 

16M (x2 spanwise) 

9M (x2, x2) 
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Mesh coarsening – instantaneous fields 

 

34M 

9M (x2, x2) 
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Mesh coarsening – spectra 
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Mesh coarsening – far field 

Flap solid  

surface 

Slat solid  

surface 

Permeable 

surface 
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Reaching SSS from RANS solution 
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Convergence in time 
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Conclusion: estimation of CPU time 

Reference: 1 TS with 35M mesh =  0.4 CPUh (dt=7E-5), 1 TU = 5.7K CPUh  (Intel Xeon v3)  

Whole wing simulation 

X1 resolution = 1000M nodes,  ~8M CPUh  

X2 resolution = 600M nodes, ~5M CPUh 

X4 resolution = 300M nodes, ~2M CPUh 

 

 Using wall functions can further save 10% of CPU time 

 

Using SSS acceleration with refining meshes can save some 30% more 

 

Reasonable whole-wing simulation can fit 4-5M CPUh  

 

 Simulation of wing segment: 200 – 300 K CPUh  

 

 Hybrid whole-wing RANS + segment of DES:  500 – 700 K CPUh 

● Reaching SSS: 30 TU 

● Integration for average fields: <8 TU 

● Integration for spectral data: 20 – 30 TU 

● Overall time integration: >50 TU 


