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Aim of the Work

Installed Jet Noise Simulation 
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• Direct Noise Computation (DNC1) of a jet-flap installation noise 

wind tunnel setup tested in the Acoustic Wind Tunnel 

Braunschweig (AWB) at DLR

• DNC1 using a zonal RANS/VLES2 approach based on Non-

Linear Disturbance Equations (NLDE)3

o Zonal VLES of the entire wind tunnel setup using a 

standard CFD/CAA framework

o Evaluation of the potential to lower resolution requirements 

using an active stochastic backscatter model

o Transfer of stochastic backscatter from DHIT4 to use cases

1Bailly, Bogey & Marsden ’10: solving the compressible Navier-Stokes

equations to determine simultaneously the aerodynamic field and the acoustic field

2Very-large-eddy simulation: filter and grid are too coarse to resolve 80% of the 

energy (Pope 2000)

3Morris ‘97, Sagaut & Labourasse ‘02, Terracol et al. ‘06, Batten et al. ’04

4Decaying Homogeneous Isotropic Turbulence

AWB Wind Tunnel @ DLR
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Simulation Problem

UHBR Installation Noise 
• Noise prediction for configurations with nozzle mounted closely to wing

• The installation noise from jet-airframe interaction potentially is one of 

the prominent noise source

• This noise generation mechanism is attributed to coherent 

hydrodynamic fluctuations passing by the airfoil trailing edge

• Qualitatively different noise generation mechanisms as can be observed 

in directivity pattern:

o Airframe → maximum to forward arc

o Jet Noise → maximum to rearward arc

DLR.de  •  CEAA 2018 Aeroacoustics Conference •  Chart 4



Outline 

• Simulation Problem

• Methodology

• Results of cold isolated single stream jet

• Results of installed UHBR configuration

• Summary & Conclusions



Methodology: Zonal RANS/VLES Approach 

NLDE4 (Non-Linear Disturbance Equations)

• Navier-Stokes equations for primitive variables:

• Triple decomposition of variables: 

• NLDE Variant 1:

• NLDE Variant 2:   

≡RANS

resolved flow

subgrid fluctuations

RANS mean-flow resolved fluctuations

4Morris ‘97, Sagaut & Labourasse ‘02, Terracol et al. ‘06, Batten et al. ‘04
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Methodology

NLDE (Non-Linear Disturbance Equations)

• NLDE Variant 1:

• NLDE Variant 2:

• Constant off-set necessary to avoid spurious turbulence in single stream jet

• “Variant 1” used for momentum equation (“off-set forcing w/o forcing”)

• “Variant 2” used for density + pressure equations (no off-set forcing) 

• Background RANS flow from DLR CFD solver TAU 

• NLDE realized with DLR code PIANO 

o 4th order DRP scheme of Tam & Webb

o High-order (HO) filter to remove spurious waves

o Optimized 4th order Runge-Kutta time integration

No off-set forcing in momentum equation

Off-set forcing in mom. eq. (rescaled level)

Spurious turb. kinetic energy

explicit off-set forcing

off-set forcing w/o forcing
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NLDE + Stochastic Backscatter

= FES (Forced Eddy Simulation)

▪ Smagorinsky-like vector-force sgs-model4 of fluctuations

▪ High-order filtered equations + sgs-model: mixed model5

▪ 3+1-D stochastic forcing provides turbulent backscatter1,2,3

from non-resolved scales

1C.E. Leith, Physics of Fluids A 2, 297, 2U. Schumann, Proc. R. Soc. London A (1995), 
3Zamansky et al., J. of Turb. 11, (2010).

4Dantinne, Jeanmart, Winckelmans, Legat, Carati, Applied Scientific Research (59), 1998

(5)

5Bardina, Ferziger, and Reynolds, 1980

r.h.s. vector force       dissipation     stochastic forcing
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NLDE + Stochastic Backscatter

= FES (Forced Eddy Simulation)

Marcus, ‘NUMERICAL MODELING OF SUBGRID-SCALE FLOW IN 

TURBULENCE ROTATION AND CONVECTION’,1986

o k4-backscatter-spectrum

o divergence-free (solenoidal) forcing

o spatial correlation length scale of forcing from local mesh resolution 

o forcing defined in Lagrangian frame 

o realization of finite local turbulent time scale 

• Backscatter forcing features as discussed in literature
(Kraichnan 1976, Leith 1990, , Mason & Thomson 1992, Schumann 1995, Lesieur 1980, Marstop 2007)

(5)

r.h.s. vector force       dissipation     stochastic forcing
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Backscatter Calibration for DHIT (AIAA 2017-3017)

Status Accomplished 

• Results derived from Decaying Homogeneous Isotropic Turbulence (DHIT) simulation (Wray data*)

i. k4-scaling of backscatter forcing from literature confirmed 

ii. Forcing scaling derived (as a function of cut-off wave number / length scale)

iii. Proper scaling of residual eddy viscosity derived from calibration

iv. High order filtering of equations not sufficient, eddy-viscosity needed to avoid energy pile-up in spectrum (subgrid

forcing comprises dissipative and productive parts) 

*DNS Data available on AGARD database; A. Wray 1997;

http://torroja.dmt.upm.es/turbdata/agard/chapter3/HOM02/
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• Methods works for different mesh resolutions

• Eddy viscosity calibration yields a modified damped eddy viscosity model (Speziale ‘98) 

• Scaling function based on the RANS length scale LR instead of Kolmogorov scale

• Corresponds with VLES model of Han et al.1, albeit with larger beta-value 

Backscatter Calibration for DHIT (AIAA 2017-3017)

4J. Sci China-Phys Mech Astron, 2012

Cut-off depending eddy-viscosity scaling; 

Smagorinsky vs. damped eddy viscosity 

model (from calibration)
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Extension of DHIT calibration to use cases

Modification of dissipative part

Example high-lift slat-noise: frequency content too high at slat, 
i.e., low frequency noise missing

Modified dissipative model: proper sound generation @slat

• Slat noise with calibrated backscatter model (Heitmann & Ewert 2018)

o Observation: calibrated damped residual eddy viscosity at start of comp. too high (no resolved fluctuations) 

o Solution: eddy viscosity scaled with resolved TKE from moving-averaging of solution

o Moving-average time scale from background RANS 

slat noise problem slat noise problem
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3+1-D Stochastic Backscatter Forcing  

FRPM: Fast Random Particle-Mesh Method

• Velocity field divergence-free (solenoidal)  

• Convection property of vorticity in non-uniform mean-flow 

• Local reconstruction of target turbulent kinetic energy from RANS

• Local reconstruction of turbulent time- & length-scales from RANS

• Broadband spectra realized  

• Computationally efficient / parallelized

2-D Single Stream Jet
(fluctuating vorticity source)

AIAA Pap. 2005-2862 / AIAA Pap. 2006 / Comp. & Fluids 37 (2008) / AIAA 2007-3506 

/ AIAA 2009-3369 / AIAA 2009-3175 / JSV 330 (2011) / Comp. & Fluids 132 (2016) 
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Results for cold isolated single stream jet

Computational Setup for Single Stream Jet FES

• Two computational cases are used to validate the FES approach

• 3-D cold isolated single stream jet (SSJ) computation for nozzle exit 

Mach numbers 0.6 (Re=0.68M) and 0.9 (Re=1M)

• Both SSJ in static condition 

• CAA mesh with 87 grid blocks and approx. 9.7 Mio. grid points (O-

mesh topology, approx. 20kHz Resolution, St~3.6)

• FRPM patch is resolved with approx. 2.6 Mio grid points

• Computations are performed on 88 CPUs with runtime of 4-7 days

• FES domain excludes nozzle interior

TAU SST k-ω model, Mj=0.6 TAU SST k-ω model, Mj=0.9

u-velocity u-velocity
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Results for cold isolated single stream jets II

Flow Properties

u-velocity Mj=0.9 jet
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Results for cold isolated single stream jets III

Flow Properties

RANS TKE FES Resolved TKE

• Dissipation extended by mean-part: too fast decay observed

Mj=0.6, Mach contours Mj=0.6, Mach contours

Mj=0.9, Mach contours Mj=0.9, Mach contours
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Results for cold isolated single stream jets III

Flow Properties

RANS TKE, 33.3% squeezed FES Resolved TKE

• Dissipation extended by mean-part: too fast decay observed

Mj=0.6, Mach contours

Mj=0.9, Mach contours
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• Potential core of RANS too long (7.5D) and drop-off too steep

• RANS mean-flow corrected by NLDE-FES

• Qualitatively right correction of center line Mach number

• FES Potential core (4.5D) slightly too short (4-6D expected)

→ may indicate slightly too strong shear layer mixing

o stochastic forcing slightly too strong

o too much filtering 

Results for cold isolated single stream jets IV

Flow Properties

Center line Mach number
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Results for cold isolated single stream jets V

Resolved Sound Field Mj=0.9

Comparison of spectra with reference

• No enhanced laminar-to-turbulent shear-layer 

transition and increased noise due to vortex pairing

p’, fluctuating pressure Mj=0.9 jet
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Results for cold isolated single stream jets VI

Flow Properties

Mj=0.6

Mj=0.9

• Right Mach-number scaling

θ=90°

θ=90°
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Results of installed UHBR configuration

Installed UHBR configuration in AWB wind tunnel I

Experimental setup of LIST configuration

• Numerical setup is reproducing the experimental setup of AWB for installed UHBR configuration

• Computational domain is limited to area of interest, i.e. between the AWB nozzle and collector; in spanwise

direction between the side plates

• Flow conditions are emulating the approach conditions with flap angle 25°

Ma=0.2

Ma=0.4
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Results of installed UHBR configuration

Computational Chain

• Smoothed SMB mesh, AWB jet-wing installation, 350 blocks, 30mio points

TAU RANS mean-flow and CAA meshCAA mesh
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Results of installed UHBR configuration

Installed UHBR configuration in AWB wind tunnel II

Q-criterion from PIANO resolved domain

• Q-criterion (iso-surfaces) colored with the flow velocity

• Spanwise extend of computational domain does not 

include w/t side plates but are closely positioned to it

• Appearance of wake structures from the trailing edges 

of side plates 

• Vortex shedding on the upper side of the wing is 

triggered by close position of the UBHR nacelle0
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Results of installed UHBR configuration

Installed UHBR configuration in AWB wind tunnel III

y=0.3my=0.0my=-0.3m

• Contour plots of pressure fluctuations at three different spanwise cuts; in the symmetry plane of 

UHBR nozzle and to the left/right with 0.3m separation

• Strong circular noise radiation is observed with its origin at the flap trailing edge

• The hydrodynamic pressure fluctuations of the UHBR jet are observed  in the cut at the centerline 

• Noise radiation to the bottom side appears to be less intensive compared to region above wing
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Summary & Conclusions

• Method

o Application of stochastic backscatter method to technical problem: Forced Eddy Simulation

o Successful transfer of DHIT calibration to single stream jet test case

• Single stream jet

o NLDE provide correction to RANS mean flow (potential core length)

o TKE level properly reproduced in magnitude by resolved fluctuations with respect to RANS

o Slight modification of the TKE topology 

o Proper prediction of absolute level, spectra, directivity and Mach number scaling

• Installed jet noise

o Tool chain established 

o RANS simulation of entire wind tunnel set up

o FES simulations running

o Jet-flap interactions identified in results 
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