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" J Introduction

KThe issue to be considered is how to compute acoustic field generated from low \

velocity gas flow.

- Flow is nearly incompressible — elliptic type of equations ;

- Need to use compressible model — convergence, accuracy;,

- Difficulties of treating the acoustic field — what represents sound in incompressible
flow;

- Problems of extraction of the acoustic field from the flow field — how to split
acoustic waves from the flow; J

rocedure .

- Calculate the basic unsteady flow with some level of accuracy by means of DNS,
LES, URANS.

- Extract fluctuation characteristics (pressure, velocity time histories) at points of
a representative surface.

- Use Lighthill's wave equations (*) with extracted fluctuation characteristics and
approximate analytical solutions to compute the acoustic field (Ffowcs Williams-
Hawkings method).

Assumptions: the solid surface is small enough in comparison with the propagating
wcoustic wave length, and the observation point is far from sound sources. /

ﬂ common way to treat aeroacoustics is the uncoupled approach (a postprocessim
P

(*) M. J. Lighthill. On Sound Generated Aerodynamically I. General Theory. Proceedings of the Royal Society of
London A, v.211, 1952, pp.564-587.



" J Objective

Purpose: develop a numerical method for prediction near acoustic field from
low Mach number flow (e.g., sound generated by an automobile rear-view
mirror) when FWH method is not applicable.

The method is inspired by the study of Slimon et al (*) — splitting approach. \

- Compressible Navier-Stokes equations;

- Expansion of the solution in series with respect to a small parameter (squared
Mach number).

- Leading terms in these expansions define the base flow field - incompressible
Navier-Stokes equations + equation of density variation.

- Higher order terms - the acoustic field, governed by a reduced system that
depends on parameters of the base flow.

- Acoustic equations are applied both near and far field. /

f The method has certain advantages over other methods that treat sound and \
flow fields in uncoupled manner.
- Different discrete models for the base flow and the acoustic field equations.
- Different numerical schemes to take into account basic features of these
equations.
- Flow equations are unsplit from the acoustic equations, i.e., the generated
\- sound does not affect the flow field. J

(*) S.A. Slimon, et al. Development of Computational Aeroacoustics Equations for Subsonic Flows Using a Mach
Number Expansion Approach. JCP, v.159, 2000, pp.377-406.




Compressible N.-S. equations (calorically perfect gas):

Mathematical Model
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Non-dimensional flow parameters: U, P, and R -
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- _ Mathematical Model: Base flow
4 div(U,)=0 A

Leading terms O(1):
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System is split into 2 parts: incompressible N.-S. + equation for density variation.

Incompressible N.-S. model for low speed gas dynamics doesn’t assume
constant density: variation in density is of order of pressure variation!

If neglect dissipative factors in the R.-H.S, |P, =R, or p—p, = Cg(p —Py)

This is very similar to the hydrodynamic density correction of Hardin and Pope (*)
P~ Lo :Eoz(p_ p), p=<p(t)>

By splitting P =P, +P/ sothat P, = 2(7|; D E,:E, +d|v[— grad(yP, —R,)]
€
we get R,=P, i.e., exactly the Hardin-Pope density correction, but with a different

meaning of P,. This correction must be computed on the base of incompressible
solution (U,,R,) !

(*) Hardin,J. C., and Pope, S. D., “An Acoustic/Viscous Splitting Technique for Computational Aeroacoustics,”
Theoretical and Computational Fluid Dynamics, Vol. 6, No. 5-6, 1994, pp. 334-340



Mathematical Model: Acoustic Field

Model for acoustic field is derived on the base of incompressible solution denoted
by subscript *. Acoustic parameters are treated as counterpart to incompressible

solution in the flow parameters:
p=p.+p, p=p.+p, v=Vv,+V’

where p, includes both unperturbed constant density and density correction

given by incompressible model.

- Neglecting dissipative viscous and heat conduction effects;
- Isentropicity of the acoustic field, s'=0 ;

\_ - acoustic quantities are much smaller than quatities of the base flow.

4 L . .
Substituting to the compressible mass and momentum balance equations, assume:

With these assumptions, linearization of EOS

p.+p =P(p, +p,s, +5)

yields a simple relation for p’ and p" :

Mass and momentum balance equations result

[ p'=c’p’ p'= i ,0'] in the governing equations for acoustic
Ps variables:
\ .
Ao D.(p, N Hyperbolic system
a—'ierlv(f):— é’f ), f=(p,+p)V+p'V, with r.-h.s. source
A=V,+V £C
) D _ * *
ﬂﬂjw(h):_ P, 'OO)V*, h= fe(v, +V)+ pV, v +C o'l
\_ ot Dt




" J Numerical methods

/Mathematical model: solution of two system of equations — for the base flow anh

for the acoustic field. Specifics of these systems — different grids and time steps:

- Resolving wall boundary layer and structures of the sound wavelength scale in the
far field,

- Resolving sound characteristics in a region of 1Khz to 2Khz — much smaller time
step than that of the base flow (~4-5 times).

To adjust the flow data to acoustics grid and time levels:

- Cubic spline for the fluid time step;

- Tri-linear interpolation for remapping from flow grid onto acoustic grid. /

~N

/" Flow discrete model:
- LES method with the mixed-time-scale SGS model (*) for turbulence;
- FVM on colocated grid with 2"d order central difference for spatial derivatives;
- Implicit Crank-Nicolson time marching scheme;

\_ " SMAC method for pressure field calculation.

AN

" Acoustics discrete model:

- FVM with 4" order WENO cell interface interpolation;

- HLLE approximate Riemann solver for calculating numerical acoustic fluxes at
cell interfaces;

\_ - Explicit two-stage Runge-Kutta time marching scheme. )

(*) Inagaki M et al “A mixed-time-scale SGS model with fixed model parameters for practical LES” Journal of
Fluids Engineering, Vol. 127, No. 5-6, 2005, pp. 1-13



Verification: Cylinder

Acoustic field around a circular cylinder (Aeolian tones): Re=150, M=0.3, Pr=0.72
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Validation: block on the ground

Acoustic field with a large solid surface: rectangular cylinder on the ground.
Experiment: u_=44.7m/s, Re=29000, M_=0.13 Calculation:
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E _ Block on the ground: numerical results

Comparison calculation with experiment
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How does small change in shape effects acoustics? case 2

.

Simplified model: mirror with a
short stay

[Flow calculation domain ]

25 m
-+ -

outflow

solid surface

i |
0.31m

slip

g Single-block structured grid 309x143x159 in N
25x10x20 m domain, wall grid spacing 0.4
mm, solid surface at x>-0.31 m, initial data:
p, =0, u, =38.9m/s,

N

Re =253000/0.1m, M =0.113

/

Application: automobile rear-view mirror

The view of (a)
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Two cases: smooth edge (case 1) and
sharp edge (case 2)
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/Single-block structured grid 283x150x160, N
grid spacing - 1mm (wall), 26 mm (domain),
15 points/wave 1.3KHz, PML b.c. (20 cells),
time step — 2.56d-6 s (flow), 0.64d-6 s

(acoustics), region of resolution — 1-2 kHz
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Application: automobile rear-view mirror

computed velocity field: separation _ _
sound pressure in far field

X-y plane ground plane
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(b) Case 2 : in the tip region. 30 -
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(c¢) Case 2 : in the tip region with a

filter between 1 kHz and 2 kHz.

Generation of vortices around the tip is the
root-mean-square reason of increasing sound
pressure fluctuation, (P.)ms




" . S Application: automobile rear-view mirror

Directivity of sound: SPL at r=1.6 m from the origin in the x-y plane
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" J Conclusions

/Aflow/acoustic splitting method based on asymptotic expansions has been \
developed to simulate near and far sound field generated by low Mach number
flows:

- base flow equation given by incompressible N.-S. model + density fluctuation

equation;

- acoustic equations — hyperbolic system obtained as the difference between

\compressible and incompressible equations; /
-~ | | A

The method has been verified and validated on the sound field generated from

the flow around a cylinder (aelion tone) and the flow around a block on the

plane solid surface; comparison with theoretical predictions and experimental

data has shown good results.
\_ /
4 N

The method has been applied to model near and far sound field around rear-view

automobile mirror installed on a solid plate. Influence of small change in geometry
on the radiated sound has been investigated. Flow separation at the sharp tip was
shown to increase SPL at frequences above 1 kHz.

- )




