V

Large Scale Motion
In a Dual Stream Jet

UIf Michel, Felix Kramer, Charles Mockett
CFD Software E+F GmbH , Berlin

Fourth International Workshop
"Computational Experiment in Aeroacoustics"
September 21-24, 2016
Svetlogorsk, Russia

CEAA, September 2016, Svetlogorsk

NN\
CFD Software E4+F GmbH ¥ =



X/

Simulation of a dual stream jet

/

Computational Experiment on the noise sources in a dual stream jet

Hybrid RANS-LES (DES) with recent developments concerning treatment of grey
area problem (Mockett et al 2016)

Simulation performed with a time step corresponding to a sampling Strouhal
number f.D_/U, = 1035.

All source-relevant flow quantities stored every 32nd time step for later source
analysis. Maximum Strouhal number of analysis = 16.

Simulation was run over 186 convective time units D_/U...

Data stored on 4 TB hard drive for later source analysis
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Grid

® The grid consists of around 28.5 million cells, with 160 cells applied in the
azimuthal direction

® Hybrid structured-unstructured grid. Structured meshing inside the jet plume
region coupled with unstructured meshing elsewhere

QeI s © Detail of grid in vicinity of nozzle
% ' (Mockett et al. 2016)

Semi-structured fanning region

Unstructured bullet region

/
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Sources of jet noise

/

Convective Lighthill equation to account for the flight stream

L(d 9 P9
) E faxf P —g_q

Dipol iation to acoustic far field requires storage of three density gradients
Pressure stored in addition
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Pressure as source variable

/

Solution of convective Lighthill equation for an unbounded field

L[ q(xi,yisty) Doppler fact
! 11V br ppler ractor
X;, 1) = — dV (v;
P( I ) 431._/ f'eDf ()’-‘) Df=1-/\/lfcosee
v .
Valid everywhere, including the source region
Integral finite for r, > 0 (x; - y))
p’ describes influence of q in vicinity of source position y..
M=U/a,
—®=  source position

r, is emission distance

\93 6, is emission angle
g T——— observer position

re Mf
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Unsteady pressure in jet

Unsteady pressure is related to sources
Pressure field studied at x/D, = 2.5, 5, 10, 20

Snapshot of simulation with
locations of source analysis

—> | x/D,=20
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/ Mean velocity and mean square pressure

/D=5
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Pressure fluctuations largest where radial velocity gradient largest
Valid for all axial positions in jet
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mhird octave band spectra for various x/D,

—e— z/D. =2.500,7/D. = 0.500
—a— x/D. =5.000,7/D, = 0.500
{|—8— 2/D. =10.000,r/D. = 0.500
—v— /D, = 20.000,7/D, = 0.600

—60

Pressures normalized with the
ambient pressure p,,.

—T70

Peak frequencies get smaller with
increasing axial distance from the
nozzle.
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| One-third octave band spectra for x/D_=5

—e— x/D. =5.000, /D, = 0.100
—a— 2/D. =5.000, /D, = 0.150
—m— 2/D. =5.000, /D, = 0.200
—v— x/D. =5.000, /D, = 0.250
e —<— x/D. =5.000, /D, = 0.300
> —— 2/D. =5.000, r/D, = 0.400
% —e— z/D. =5.000,7/D. = 0.500
= —%— x/D. =5.000, /D, = 0.600
— —— /D. =5.000,7/D. = 0.700
% /D, =5.000,r/D. = 0.800
E —<— z/D, = 5.000,r/D. = 0.900
3 —&— /D, =5.000, /D, = 1.000
3] —e— x/D. =5.000,7/D,. = 1.100
o —100
o
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Peak Strouhal number St=0.7 in
at r/D_=0.5 (source field)

—110

12T W o Peak Strouhal number St=0.4
St at r/D_=1.1 (near field)
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4\tification of large scale structures

® Large scales can be studied with two-point cross-spectra
® Ring source element for azimuthal source separation.

® Cross spectrum only function of frequency and
azimuthal angle difference |Ag|

® Cross spectra as function of |Ag@| can be
decomposed into Fourier series
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Azimuthal components
of unsteady flow and sound fields

/

Decomposition into azimuthal components m
possible for any flow variable, including g or p

Each far-field m is caused by the same m of
sources in flow field (Michalke 1972)

Pressure field inside jet dominated by low-
order m (Experiments Armstrong et al 1977)

Far field dominated by low-order m
(Experiments Maestrello 1977)

Results of computational experiment are now
shown
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Cross spectra of pressure on a ring

z/D, = 5.000,r/D, = 0.500, St = 0.40 x/D. = 5.000,r/D, = 0.500, St = 1.00
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Decomposition into azimuthal Fourier components

x/D. = 5.000,r/D, = 0.500, St = 0.40 z/D, = 5.000,r/D, = 0.500, St = 1.00
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m=0 and m=1 components dominate source field
Amplitude decay faster for higher Strouhal number, less efficient
radiation

Pressure fluctuations for both St almost identical
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- Decomposition into azimuthal Fourier components
z/D, = 5.000|r/D, = 0.500, St = 0.40 o z/De = 5004 r/D. = 1.1004St = 0.40
_f% Source field E Near field
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Azimuthal component cross-spectra p Azimuthal component cross-spectra p

Low order m are larger in near field than in source field because of
lower radiation efficiency
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- Decomposition into azimuthal Fourier components

x/D,. = 2.500,r/D. = 0.500|St = 0.90 x/D, = 10.000 r /D, = 0.500} St = 0.35
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m=0, 1, and 2 components dominate source field at x/D_=2.5 and
x/D.=10, levels almost identical
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- Decomposition into azimuthal Fourier components

x/D, = 20.000|r/D, = 0.600,St = 0.20 x/De = 20.000I r/D, = 2.000fSt = 0.20
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m =0 and 1 components dominate source field and near field at
x/D,=20
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/ Phase speeds

Cross-spectral density between two axial positions
Results shown for x,/D,= 5.0 and x,/D,= 5.1

Snapshot of simulation with
location of phase speed
analysis

—_>
x/D.=5 and 5.1
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e Phase speeds x/D_=5

r5/D. =5.0, v,/D, = 5.1 x5/De =5.0, 1s/De = 5.1
St =0.40, ASt =0.10 St = 0.80, ASt = 0.10
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Phase speed almost independent of radius

Even in near field outside jet

Result similar for all other axial positions

Pressure fluctuations dominated by the influence of wave-like

fluctuations related to the instability of the jet shear layer.
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= Conclusions

® Jet noise sources dominated by contribution of low-order azimuthal modes
® Noise sources are results of wave-like motion

® High frequencies caused by wave-like motion close to nozzle

® Low frequencies caused by wave-like motion further downstream

® Only a few azimuthal components contribute to the near-field radiation and
likely even less to the far-field radiation

® The noise sources are concentrated at the radial location with the steepest
radial velocity gradient.

® Acylindrical jet noise source model is likely sufficient
® “Small scale stuff” in source region is ineffective radiator

® “Small scale stuff” may even mask large scale motion
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/ Conclusions 2

® Moving eddy model for jet noise sources is completely wrong.

® |nthe critical layer (phase speed = flow speed) the frequency of a moving eddy
would be zero.
® Lighthill (1954) and Ffowcs-Williams (1963) erred in this respect.

® Michalke (1972) was right when he introduced the wave model for jet
turbulence.
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