Large Scale Motion in a Dual Stream Jet

Ulf Michel, Felix Kramer, Charles Mockett CFD Software E+F GmbH, Berlin

Fourth International Workshop
"Computational Experiment in Aeroacoustics"
September 21-24, 2016
Svetlogorsk, Russia

Simulation of a dual stream jet

Computational Experiment on the noise sources in a dual stream jet

- Hybrid RANS-LES (DES) with recent developments concerning treatment of grey area problem (Mockett et al 2016)
- Simulation performed with a time step corresponding to a sampling Strouhal number $f_s D_e / U_e = 1035$.
- All source-relevant flow quantities stored every 32nd time step for later source analysis. Maximum Strouhal number of analysis = 16.
- Simulation was run over 186 convective time units D_e/U_e.
- Data stored on 4 TB hard drive for later source analysis

Grid

- The grid consists of around 28.5 million cells, with 160 cells applied in the azimuthal direction
- Hybrid structured-unstructured grid. Structured meshing inside the jet plume region coupled with unstructured meshing elsewhere

 Detail of grid in vicinity of nozzle (Mockett et al. 2016)

Sources of jet noise

Convective Lighthill equation to account for the flight stream

$$\frac{1}{a_0^2} \left(\frac{\partial}{\partial t} + U_i \frac{\partial}{\partial x_i} \right)^2 p - \frac{\partial^2 p}{\partial x_i^2} = q$$

Source

$$q = \frac{\partial^2}{\partial x_i \partial x_j} (\rho u_i u_j - \tau_{ij}) - \left(\frac{\partial}{\partial t} + U_i \frac{\partial}{\partial x_i}\right)^2 \left(\rho - \frac{p}{a_0^2}\right) \qquad u_i = v_i - U_i$$

- Quadrupole radiation to acoustic far field requires storage of three velocities ui.
- Dipole radiation to acoustic far field requires storage of three density gradients
- Pressure stored in addition

Pressure as source variable

Solution of convective Lighthill equation for an unbounded field

$$p'(x_i,t) = \frac{1}{4\pi} \int_{V} \frac{q(x_i, y_i, t_r)}{r_e D_f} dV(y_i)$$
Doppler factor
$$D_f = 1 - M_f \cos \theta_e$$

- Valid everywhere, including the source region
- Integral finite for $r_e \rightarrow 0 (x_i \rightarrow y_i)$
- p' describes influence of q in vicinity of source position y_i .

CFD Software E+F GmbH

Unsteady pressure in jet

Unsteady pressure is related to sources Pressure field studied at $x/D_e = 2.5, 5, 10, 20$

CFD Software E+F GmbH

Mean velocity and mean square pressure $x/D_e=5$

- Pressure fluctuations largest where radial velocity gradient largest
- Valid for all axial positions in jet

One-third octave band spectra for various x/D_e

- Pressures normalized with the ambient pressure p_0 .
- Peak frequencies get smaller with increasing axial distance from the nozzle.

One-third octave band spectra for $x/D_e=5$

- Peak Strouhal number St=0.7 in at r/D_e=0.5 (source field)
- Peak Strouhal number St=0.4 at r/D_e=1.1 (near field)

CFD Software E+F GmbH

Identification of large scale structures

- Large scales can be studied with two-point cross-spectra
- Ring source element for azimuthal source separation.

- Cross spectrum only function of frequency and azimuthal angle difference $|\Delta \phi|$
- Cross spectra as function of |Δφ| can be decomposed into Fourier series

Azimuthal components of unsteady flow and sound fields

- Decomposition into azimuthal components m possible for any flow variable, including q or p
- Each far-field m is caused by the same m of sources in flow field (Michalke 1972)
- Pressure field inside jet dominated by loworder m (Experiments Armstrong et al 1977)
- Far field dominated by low-order m (Experiments Maestrello 1977)
- Results of computational experiment are now shown

Cross spectra of pressure on a ring

- Peak Strouhal number in middle of shear layer
- Gradual decrease of real part

- Higher Strouhal number in middle of shear layer
- Rapid decrease of real part

- m=0 and m=1 components dominate source field
- Amplitude decay faster for higher Strouhal number, less efficient radiation
- Pressure fluctuations for both St almost identical CEAA, September 2016, Svetlogorsk

• Low order *m* are larger in near field than in source field because of lower radiation efficiency

m=0, 1, and 2 components dominate source field at x/D_e =2.5 and x/D_e =10, levels almost identical

CFD Software E+F GmbH

m = 0 and 1 components dominate source field and near field at $x/D_e=20$

Phase speeds

Cross-spectral density between two axial positions Results shown for $x_1/D_e = 5.0$ and $x_2/D_e = 5.1$

Snapshot of simulation with location of phase speed analysis

Phase speeds $x/D_e=5$

- Phase speed almost independent of radius
- Even in near field outside jet
- Result similar for all other axial positions
- Pressure fluctuations dominated by the influence of wave-like fluctuations related to the instability of the jet shear layer.

Conclusions

- Jet noise sources dominated by contribution of low-order azimuthal modes
- Noise sources are results of wave-like motion
- High frequencies caused by wave-like motion close to nozzle
- Low frequencies caused by wave-like motion further downstream
- Only a few azimuthal components contribute to the near-field radiation and likely even less to the far-field radiation
- The noise sources are concentrated at the radial location with the steepest radial velocity gradient.
- A cylindrical jet noise source model is likely sufficient
- "Small scale stuff" in source region is ineffective radiator
- "Small scale stuff" may even mask large scale motion

Conclusions 2

- Moving eddy model for jet noise sources is completely wrong.
- In the critical layer (phase speed = flow speed) the frequency of a moving eddy would be zero.
- Lighthill (1954) and Ffowcs-Williams (1963) erred in this respect.
- Michalke (1972) was right when he introduced the wave model for jet turbulence.

Acknowledgement

The work was performed in the EU-funded project "JERONIMO" (ACP2-GA-2012-314692-JERONIMO).

References

- A. Michalke (1972): An expansion scheme for the noise from circular jets. Z.Flugwiss. 6, 229-237
- L. Maestrello (1977): Statistical properties of the sound and source fields of an axisymmetric jet. AIAA-1977-1267
- R. R. Armstrong, A. Michalke, H. V. Fuchs (1977): Coherent Structures in Jet Turbulence and Noise . AIAA Journal 15, 1011-1017
- U. Michel (2009): The role of source interference in Jet Noise. AIAA-2009-3377
- C. Mockett, M. Fuchs, F. Kramer, U. Michel, F. Thiele, M. Steger (2016): Turbulence
 Modelling and Meshing Developments for the Prediction of Jet Noise Installation Effects