

CREATING OF EXPERIMENTAL ACOUSTIC DATABASE FOR AN ISOLATED HELICOPTER'S MAIN ROTOR

G.N. Barakos¹, A.S. Batrakov², A.N. Bozhenko², L.I. Garipova², A.N. Kusuymov², S.A. Michailov², **V.V. Pakhov²**, R.P. Stepanov².

- ¹ University of Glasgow, Glasgow, George.Barakos@glasgow.ac.uk
- ² KNRTU-KAI, Kazan, VVPakhov@kai.ru

Outline

Experimental setup and data

- Wind tunnel description;
- Acoustic experimental facility;
- Experimental setup;
- Test results;

CFD data and comparisons

- CFD description (brief);
- CFD results;
- CFD-to-experiment comparisons;

T-1K wind tunnel of KNRTU-KAI

- 1. Cenno
- 2. Вентилятер
- 3. Рабочая часть
- 4. Формация
- 5. Диффузер
- Б. Хенейкемб
- 7. Обратный канал

T-1K wind tunnel:

- Low-speed, closed-circuit wind tunnel with opened test section;
- Nozzle diameter: 2,25 m;
- Test section length: 3m;
- Flow speed: 0-50 m/s;
- Tu \leq 0.5%;

In 2014, wind tunnel has been equipped with an anechoic chamber for acoustic tests. Walls of the chamber consist of two layers: first is Heimholtz resonators for frequencies near 100 Hz (determined from preliminary tests), second is melamin-based anechoic material.

Rotor rig of the T-1K

T-1K rotor rig:

- Rpm up to 1800 (2500 rpm planned);
- Rotor pitch angle -30°..30°
- Thrust/torque measurements;
- Equipped with the blade positioner;

Acoustic chamber

Acoustic measurement system

System based on NI-PXI 4496 ADC cards of National instruments specialized for acoustics and vibrations;

•Number of channels – 16;

•Input resolution: 24 bits;

Max sampling rate: 204,8 kS/s;

Microphone	DBX RTA-M
Frequency	2020 000 Hz
Sensitivity	-63 dB (±3)
Impedance	250 Ohm
Signal/noise	<110 dB
Excitation	9-15 V

Test setup for acoustic measurements

Experimental conditions:

- 900 rpm;
- Hover mode;
- Tests performed for all possible wall open/close configurations;
- Test case with blades unmounted has been performed;

Test results

Test results shows a peak just in a traverse of the blade for the clean rig; An engine's peak is also observed;

For 8 degrees of collective pitch, the read pick is located a little bit higher than the blade's tip. It is due to a cone angle;

Test results

Test results

For 2 degrees of collective, the black curve is slightly bigger than 0 mm mic. This can be caused by cone angle;

Some analysis has been performed for the cleansubtracted signal. It shows that the first harmonic is least influed;

- Numerical simulation of the flow around the rotor model for hover mode is based on RANS simulation with the k-ω turbulence model and was carried out in HMB CFD-code;
- The flow around isolated rotor in hover mode has periodical structure. On this reason computational domain was constructed only for one blade.
- The multiblock hexa-grid grid was created in ICEM CFD tool and contains about 4.4 mln of cells.

Diagram of direction (SPL, dB) for near-field (d=1.2R)

CFD results

CFD-to-experiment comparisons for the FF mode

Directivity diagram for the model of helicopter's isolated main rotor(SPL, dB) for various collective pitch angles(1° and 15°). d = 3R, $M_{tip} = 0.2273$. Plane of rotation is $\theta=0^{\circ}$ ($\theta=180^{\circ}$)

CFD comparisons

Best comparisons for distance -520;

Worst comparisons for plane-of-rotation microphone;

Conclusions and future work

- A number of tests for the rotor rig has been performed for various collective pitch angles for hover mode;
- Test results looks acceptable;
- Acoustic chamber can be preliminary characterized as suitable, but needs additional testing;
- Reached first agreement between CFD and experiment;
- Works for microphone array are in process;

Contacts

Kazan National Research Technical Univercity n.a. A.N. Tupolev

Phone: +7(843) 2369472 E-mail: <u>VVPakhov@kai.ru</u> URL: http://lab1-kai.ru/ru/

Thank You For Attention!