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@ DavID CLIFFORD PRIDMORE-BROWN developed in the paper

“Sound propagation in a fluid flowing through an attenuatingctf,
Journal of Fluid Mechanics, 4, 1958, pp 393 - 406.

an equation for 2D homentropic modal perturbations in 2D
compressible parallel shear flow: the Pridmore-Brown Equat

@ It constitutes an eigenvalue problem for the modes.

@ Now we call the radially symmetric 3D version also a PridmBrewn
Equation, and for the general case (modes along any duct seation)
the Generalised Pridmore-Brown Equation.
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Linearised Euler equations for perturbatignsp, v

(% +Vo-V)p+ pV-Vo+ V-(vpg) =0
po(fg +Vo-V)v+00(v-V)Vo+p(Vo-V)Vo=-Vp

For mean parallel shear flowg = Up(y, 2)&x, the acoustic field reduces tc

D3P + 2652 (VUg-V p) — DoV-(c§Vp) =0, Do=2+Up-s

Modes: p(x, Y, z,t) = =KX p(y 7) and © = w — kUp, then

V.

Pridmore-Brown eqn
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Boundary value problem

Pridmore-Brown equation forp(x, r, 6, t) = P(r) get—imi—ikx

1 ¢y ku Q? g
P”+( 20 °> +(—2—k2—ﬂ)P=0
Co r

o
+
Boundary conditions
iwZP = —poQ°P atr =1, P is regular atr =0 J
Eigenvalue Problem ik
Countable set of modal solutions: Py, (1) € 1kmeX
@ eigenfunctions: P (1)

o eigenvalue (modal axial wavenumber):  Km,
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How do we find “all” modes:

o Start with a simple configuration
@ Parameter continuation in

o ImpedanceZ
¢ Mean flow profileug, co



Example of path-following

In duct, eigenvaluelsy,, follows from impedance boundary condition.
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Example of path-following

In duct, eigenvalueky,, follows from impedance boundary condition.

Examplé of path-following inZ : co — oo
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Note the surface waves: instability

* with e~ 1©t-convention. . .



Numerical results: eigenfunctions & eigenvalues
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Note: modes: = 1-4 confined to core. “Shooting” not possible.



Numerical results: eigenfunctions & eigenvalues

(d)p=4 eyn=5 =6

Eigenfunctions for upstream-running modes= 25,m = 5,
Z=2—-i,ug= %(1 - %rz), uniform temperature.
Note: modest = 1-4 confined to core. “Shooting” not possible.
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Test case borrowed from quantum-mechanical potentialpvet lem:
@ Pridmore-Brown equation:

P"+ B(r,k)P' +y(r, k)P =0

@ Quantisation conditiotrased on WKB-type (high) approximation
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Numerical results: further tests

Test case borrowed from quantum-mechanical potentialpvet lem:
@ Pridmore-Brown equation:

P"+ B(r,k)P' +y(r, k)P =0

@ Quantisation conditiotrased on WKB-type (high) approximation

r2
/r Jyrkd =(n—Hr, n=12...
1

kQC Knumerical

-60.470038 -60.4392
-565.761464  -55.7281
-51.134207  -51.0980 - 0.0000i
-46.605323  -46.5659 - 0.0003i
-42.195790  -42.1422 - 0.0212i
-37.931052  -37.5622 - 0.3254i

O WNE|X

k’s for upstream-running modes.

@ Excellent agreement



Animated mode patterns

Evidently, we obtain mode patterns like
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¥ o Linearised Euler flow.

P @ Uniform velocity profile with
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A canonical model for sound in sheared flow

¥ o Linearised Euler flow.
/1 e Uniform velocity profile with
—f-=f-mmm e ---+- finite boundary layers (shear).
‘ ‘ ,: o Wall lined by impedance.
) eeeeeeeeaneeeeeei @ POINt mass source.

Time-harmonic pressure field in Fourier representation

p(x.r,0,t) = ! Z —”"9/ Pm(r, k) €7 dk.
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Pridmore-Brown equation fgp and point mass source @, 6,r) = (0, 0,rg
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U(1) = 0, pregularinr = 0, impedance condition at walSingularity.



Typical properties

@ Acoustic modes



Typical properties

@ Acoustic modes
o Hydrodynamic instabilities and other surface waves



Typical properties

@ Acoustic modes
@ Hydrodynamic instabilities and other surface waves
o Critical layers w — kU = 0: modal phase speed = mean flow velocity



Typical properties

@ Acoustic modes
@ Hydrodynamic instabilities and other surface waves
o Critical layer$ » — kU = 0: modal phase speed = mean flow velocity

critical layer:
w/k=U(r.)




Typical properties

@ Acoustic modes
@ Hydrodynamic instabilities and other surface waves
o Critical layer$ » — kU = 0: modal phase speed = mean flow velocity

critical layer:
w/k=U(r.)

*singularity— branch point of complex logarithm i-plane
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acoustic pole&m,,
branch cut
ko (source in BL)

2 additional poles
o ky (instability);

40

20

o k_ (associated to branch cut) ,

causal integration contour
closen for x < 0 (modes)
close, for x > 0 (modest bc)
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ExamplesM = 05,0 =10,m=0,Z=2—

h=000Lr53=04,Z=2+i h =0.05rg = 0.96 (vortices from source)
il

h =0.001 rg = 0.992 (instability from sourcel = 0.001 ro = 0.4 (instability from outside)
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Interim conclusions

@ The contribution from the branch cut and its associated igalery
minor unless all acoustic modes are cut-off. So it makesesensse the
acoustic modes as a “complete” basis to construct a gerogiios.

@ Trailing vortices in boundary layer.

@ The relevance of the spatial instability.

@ The (related) question of the limit &f — O (the Ingard-Myers limit):
the boundary condition witblya = O changes to an equivalent
boundary condition fol,yg finite.

0
i Z”:(i U —)*
wlv w ~+ Wallax P

How physical is this?
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The Ingard-Myers boundary condition

o In any reality3(perturbations) exciting other (complex) frequenties
o If h < he, they include arabsolute instability ~ €<t (group velocity= 0),
while growth rate— Im(w*) — oo for h — 0.

1.e4)
I TN 1ed 2.4 3.e4 ded 5ed
0 h [ﬂm] 0 L L L L |
w*e C
1.e4 1.e4
-2.e4
-2.e4
Im(@) [s7'] 3.e4]
-3.e4+
-4.e4+
-4.e4+ 504
5.4~ -6.e4-

Absolute instabilityw™ for varyingh
@ This makes the probleit-posedin time (Brambley).

TIf the problem is forced to béme-harmonicthere are no other than spatial instabilities.
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Condition for absolute instability

For mass-spring-damper impedance
Z=R+iom+ (iw) 1K, K = poc3/L

dimensional arguments reveil that

K

hcz(po:“)zuoo gxp(m R )N%<90:m)zum m

poUco ’ poUco

With R = 2p0Cp, L = 3.5 cm,m/pp = 32 mm,U,, = 60 m/s,
this is very, very smallh¢ = 10.5um (less than a hair!)
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Trailing vorticity from mass source

Compressible Euler equations with mass source and force

b ov
8_{[) + V- (pv) = pQ, oot +p(@-Vv)+Vp=pF

In barotropic fluid ande = V x v:

p(% +v-V)(%) =w-Vv — %Q+VxF

h,

Vorticity is only produced by non-conservative force fiEld
or by mass source Q in mean vorticity.
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Trailing vorticity from mass source

In 2D linear shear flow

If U=Ug+oy, ¢ =0 andharmonic point sourc® = §(x, y) €,
we have in the incompressible limit farcomponenty, = x

(iw+u;—x)2 = %s(x, y)

V.

with remarkably simple solution

o A w
= ——H) e Y5(y), ko= —
X poUo Y Uo

h,

Trailing vorticity from a mass source in shear flow.
Hydrodynamic wavenumbeg .k
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Examplesw =8, U =0 =6

free field
\..‘. e Pl B
pressure u-velocity v-velocity
hard wall
B nwtses Ness
pressure u-velocity v-velocity
impedance walZ = 4 — 2i
s F g Pl .
pressure u-velocity v-velocity




Scattering at hard-soft transition (by Wiener-Hopf)
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Scattering at hard-soft transition (by Wiener-Hopf)

zzzzzzzzzzzzzzzzzzzzzzzzzzz

pressure u- velocny v- veIocny

IE ‘
% —

-5 -4 -3 =2 =) 0 1 2

far field (acoustic) pressure

U’ < wis essential. Field diverges faf' > w, requiring a finite BL.
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Interim conclusions

@ A complete solution, including the branch cut contribugipis rarely
possible. Itis shown that the Pridmore-Brown modes domsiaatl can
be used as approximate basis.

@ Thin boundary layer along impedance wall becomes absohgtable,
with infinite growth rate for vanishing boundary layer (lbsed).
A finite boundary layer regularises this.

@ A mass source in shear flow produces trailing vortices.
These may scatter and radiate into sound at hard-soft ti@rsi
The behaviour is radically different fas = U’.
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Mode matching: motivation

o APU is typically a straight duct with strong (radial) temature and
mean flow gradients, and sectioned, varying boundary condit

cool air inlet
hard wall  resistive sheet

liner cavity

exhaust

7

temperature  mean flow velocity
profile Ty(r)  profile ug(r)

@ “General” solution per section by sum over modes

Pm(r, X) = Z[A?fw Pnﬁ:u(r) gk + A, Py (D e“%ux]
n=1

Typically suited for mode-matching approach.

@ New efficient and accuratdode-Matching method based on
exactintegrals of Pridmore-Brown modes.



Classical mode-matching

Mode-Matching Basics

+
a

—

B

Zi-1 Ty Ti+1

Total field in segment sum of left- and right-running waves

max
n

PIX, 1) = Z (a{':‘u PI+M () e'kl+u (X—=X1-1) +a1?u Pl,_u (r ei K. (X—XI))

n=1

(same for velocity)



Classical mode-matching

Mode-Matching Basics

............... -
—
a;
............... o - .
At the interface ak = x:
umax
pr) = Z (bﬁu PlJ,ru(r) + afu Pl_u (r))'
n=1

(same for velocity)
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Mode-Matching Basics

+ +
b; A
—

- -
a; b,

Zi-1 Ty Ti+1

Continuity of pressure at = x| leads to

max

Y )

u=1
max

n
_ + + = =
- Z(ai+1,u PI+1,;L +b|+1,u I:>I+1,u )
n=1
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Mode-Matching Basics
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Classical mode-matching

Mode-Matching Basics

+ +
b; A
—

- -
a; b,

Zi-1 Ty Ti+1

inner products with suitable test functiows, e.g.= Jm(a,r)

'umax
Z (blfu(Plfru’ W) + afu(Pl,_w qj”))
n=1
umax
=) (ai-'——i—l,u(Plil,u’ W)+ by, (R, \I’”))
n=1

Similar for continuity of axial velocity.



Classical mode-matching

Mode-Matching Basics

+ +
b; A
—

- -
a; b,

Zi-1 Ty Ti+1

Results in linear system to be solved

A+ A6 _[B* B[
CtC-||a ] [D* D] (b
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Computing inner products

Matrix entries are inner products

1
A”iM:(P'ﬁiﬂ’%):/O Plj(r)kl!v(r)r dr

Note that for non-uniform flow:
° P|,iu is determined numerically
@ All inner-products have to be determinedciinterfaces by quadrature
° Pﬁu andV, are oscillatory= numerical problems

Computing inner products numerically is expensive / lessiaate J

Central question

Can we find closed-form expressions @dher‘inner-product’? Yes! J
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Summary of new matching method

Classical (CMM) — New (NMM) mode-matching
(Pu, W) - (Fu, W)

1 1
:/ PM\I/UT dr — 2/ [wlpu Py +w2up, Py
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From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) — New (NMM) mode-matching
(Pu, W) - (Fu, W)

1 1
:/ PM\I/UT dr — 2/ [wlpu Py +w2up, Py

0 0

Fwa(Vy, Vo + W, W,)]r dr

- i [PVV,L—V,)P,L}

uadrature — =

) ku - kV Q, r=1

with ¥, = Jn(ayl) with ¥, = F,, Fu=1[Pu, Uy, Vi, W,]
expensive N cheap

less accurate accurate
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Closed form integrals of 2D eigenmodes

Prototype example dbeneralised Pridmore-BrownHelmholtz equation
o (V2 +p2) =0
" (V2¢ + a2¢) -0

on arbitrarily shaped cross-sectigh
Subtract and integrate over

(az—ﬁz)ffAd)MS = /F(d)VW-n—de)-n)d@

2D inner-product for Helmholtz eigenfunctions

1
<<¢’ W» = (X2 —,32 /F(¢V‘ﬁ'n - K”Vd)'n)dﬁs

for arbitrary boundary conditions aghandy

What if« = g and¢ = v? Something similar.
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Closed form integrals of 1D eigenmodes

o Circular duct: Helmholtz equatior- Bessel equation
@ Substitute into 2D inner-product;

¢ = Im(ar) €M, ¢ = Jn(Br)e '™
1D inner-product of Bessel functions
1
(Jm(ett). Im(BT)) =f Im(@r) Im(Br) ol
0

1
= 77 BIn(@ In(B) — adn@ In(B)]

If « = B: something similar.
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Closed form integrals for Generalised P-B modes

By analogous manipulations . ..

o Define vector of shape functio&(y, z) = [P, U, V, W]
@ P solution of Generalised PB equatidnh, V, W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

k
[/ ——n+—— PP+ — PU polo(V V + WW)
AQ | \poc3 oo

o fPNW+WM—NW+WMPM
k—k Q

Something similar fok = k.
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. ..
modes of the fornF (r) e=m?

F@r) =[P@r),U(r), V(r), W()]

@ P solution of the radial Pridmore-Brown equation
e U, V, W follow from P

Exact integrals of radial Pridmore-Brown modes

(F,F) =

) X
/ i[(ﬂl+ k)PP+ “up— prVV+WWﬁrW
0

Q| \pocd  pof2
o [ﬁV—VP]
k —k Q ol

Weighted products of Pridmore-Brown eigenfunctions.
Something similar fok = k.
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New mode-matching

Classic mode-matching (CMM)

i
+ p+ — o-

> b, (R W) + &, (R, W)

n=1

Hi+1

_ + + - —
- Z a|+l,u(P|+l,u’ ) + b|+l,M(P|+l,u’ )
n=1

(same for velocity) with test functions (for example)
Wy, = Im(ayr)

Quadrature required fqP,, W, ) terms
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New mode-matching

New* (NMM) mode-matching

w
Z bl-,FM<F|—,FM’ V) + a[u(':l_,u’ vy)
n=1

Hi+1

—Za1+1u et o) 0 (Fig s W)

but now as test functions the same modes:

‘I’v = Fl,v

*Technically not an inner-product, except for no flow or unificflow.



New mode-matching

New* (NMM) mode-matching

2
+ g+ il =
Zbl,u“zl,w‘l’v)+a1,u<':|,w‘1’v>
n=1
M1
—Za1+1u e o) 00 (Flig e W)
but now as test functions the same modes:
‘I’v:FI,v

No extra calculationand (F,,, ¥,) in closed form

*Technically not an inner-product, except for no flow or unificflow.



Numerical results

Comparing CMM and NMM
Test configurations

@ Length: 6.66

o Radius: 1

o hard wall — soft wall, interface at = 3.33
o uM¥* =50 modes in both directions

Configuration | 1l 1

Helmholtz&m «» =1386,m=5 w=886,m=5 w=15,m=5
Temperature To=1 To=1 To = 2log(2)(1 — %)
Mean flow UW=05-(1-r%) up=03-41-75) up=03-tanh10(1—r))
Impedance Z=1-i Z=1+i Z=1-i

Incidentmode u=1 n=1 n=2




Numerical results — Conf I: no-slip flow, uniform temp

Snap shot of pressure

0.5
x(m)

T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) New mode-matching.

Perfect match between NMM and CMM results
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Numerical results — Conf I: no-slip flow, uniform temp

| /
/X

I\
\\

1/
|
i |
| I

Re(P) (dimless)

‘ Re(P) (NMM), r=0.233

{ = = = Re(P) (CMM), r=0.233
\ \ Re(P) (NMM), =0.5

/ ’ = = = Re(P) (CMM), r=0.5 Bl

Re(P) (NMM), r=1

Re(P) (CMM), r=1
L L

-15 .
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

x(m)
Perfect match between NMM and CMM results

Similar for axial and radial velocities
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Energy balance (Myers’ Energy Corollary) u8'@ for conf. |
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—— testl (NMM)
—><— testl (CMM)
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=
[
c
O
? -3t
N
T
E
o
< -35}
s}
o
Rl
j=2
S

a4t

-4.5

5 10 15 20 25 30 35 40 45 50
mumax

Energy balance better with moremodes.
NMM performs better than CMM! Why?
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Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori check)

It is reasonable to assume that for sogne 0 the amplitudes
A, =0w% for p— o0
so log|A,l = qlogu + O(1). Then

_ log| Al
7 o
gu

for ©— o0

At the interface, at the walledgg: boundary cond. discontinuous.
Field may be singular, but Power Flux must vanish at edge.

It can be shown that:

g < —1 = uniform convergence of modal series
= edge condition satisfied
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Numerical results — Convergence of modal amplitudes

Do we haveg < —1 for numerical solutions?

o o

Convergence of amplitudes (NMM and CMM), for conf. I, Il aritl |
@ g~ —2 = edge condition satisfied

o Convergence ofj, reveals inaccuracies of CMM amplitudes:

* NMM amplitudes aresmoothethan CMM asu ~ M
becaus@o quadrature inaccuracifer NMM.
* Explains energy behaviour.
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Interim conclusions

Classicmode-matching (CMM):

o Uniform flow & temp:
o Mode shapes are Bessel functions
¢ Inner products are available in closed form

o Parallel (non-uniform) flow & temp:
o Mode shapes are Pridmore-Brown solutions (determined ricaly)
¢ Inner products require numerical quadrature

— expensive & less accurate

Newmode-matching (NMM):
o Parallel (non-uniform) flow & temp:
Mode shapes are Pridmore-Brown solutions (determined ricatig)
Closed form expressions for “inner-productsieaper
Solutions in very good agreement with CMM
NMM amplitudesmore accurate

(9

¢ ¢ ¢
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Epilogue

@ The success of NMM is, in a way, too good. At least far bettanth
expected, because the “inner-product” is not a proper ipneduct
(unlessup = 0 or uniform) and we can’t be sure that it is able to single
out each modal contribution.

@ Nevertheless, from the success we can only conclude thaist be
“almost” an inner-product. The modes are all “seen” andmijstished.

@ The “inner-product” is not exactly an inner-product beeate set of
discrete modes is not complete, i.e. not sufficient to caasémy
possible solution. There is a “continuous” spectrum at tice$ of
o — Kup(r) = 0. From the energy result we can (again) conclude that
this part is very small.

o Afine task in functional analysis remains . ..



@ Slowly varying Pridmore-Brown modes
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Slowly Varying Duct with Shear Flow

hard wall
fy y =h(ex) Duct
|

L X_) y=96x) hard wall

Sketch of geometry: 2-dimensional slowly varying hardtagiduct

Inviscid homentropic mean flow and harmonic perturbations

3 =V + Re(ve®l),
p= P+ Re(pe®),
p = D+ Re(p €.




Mean Flow and Perturbations
Equations & boundary conditions for the mean flow

V.(DV)=0, D(V.V)V = -VP, C2= %,
V-gU=0aty=g(ex), and V —hU =0 aty=h(ex).

h
f DU dy = F,
9




Mean Flow and Perturbations
Equations & boundary conditions for the mean flow

V.(DV)=0, D(V.V)V = -VP, C2= %,
V-gU=0aty=g(ex), and V —hU =0 aty=h(ex).

h
f DU dy = F,
9

Equations & boundary conditions for the linearised pertidns

iwp+ V-(Vp+vD) =0,
D(iw+V-V)v+D(v-V)V + p(V-V)V = —Vp,
p—C?%p =0.
v—gxu=0 aty=g9g(ex), and v—hyu=0 aty=h(ex).
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Slowly Varying Mean Flow

o Make dimensionless.
o Introduce slow variabl&X = &x.
o Forlinear shear flow of the form
UX,y) = 7(X) + o (X)(y — 9(X)), |

ananalytical solution exists.
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Slowly Varying Mean Flow (cntd.)

o We have ta0(¢?)

(DU)x + (DV)y =0,
D(UUx +VUy) + Px >~ 0,
Py ~ 0.

o with a parameterised family of solutions

o=AD
].'

T _Lbh-
"= 5n=g 2P0 -9

@ The algebraic (Bernoulli-like) equation

1 1
2+ —_Dr 1=k,
2 y—1

J

to be solved peK for D, for given fluxF, constants., E and geometry, h.



Slowly Varying Modes

To leading order in mean flow we have for the perturbations

iwp + Upx + D(Ux + vy) = —¢ [p(Ux + Vy) + uDx + Vpy],
iwu+ Uuy +vo + D lp = —¢ [—D_szp+Uxu+Vuy],
iwv + Uvy + D_lpy = —¢ [Vyv +Vvy],
p—C?p=0.




Slowly Varying Modes

To leading order in mean flow we have for the perturbations

iwp + Upx + D(Ux + vy) = —¢ [p(Ux + Vy) + uDx + Vpy],
iwu+ Uuy +vo + D lp = —¢ [—D_szp+Uxu+Vuy],
iwv + Uvy + D_lpy = —¢ [Vyv +Vvy],
p—C?p=0.

V.

Substitute the WKB-Ansatz:

[U, v, PI(X, y) = [A, B, ®](X, y; e) e [ k(e5:e)0

with slowly varying mode shapes, B, & and modal wave number. ..



Slowly Varying Modes (cntd.)

...to obtain ta?(&2)

120 + DC2(—ik A+ By) = & [CAUCT20 + DA + (Vo) |,
iQA+ Bo —ixkD1d = —¢ [(D_lcb +UA)X +VAy] ,
iQB+ D 'dy = —¢[UBx + (VB)y],

with the Doppler-shifted frequency Q = w — «U.



Pridmore-Brown & Weber Equation

Expand
A=Ac+eA1+..., B=Byg+eB1+..., d=dg+d1+...

to find to leading order thBridmore-Brown equation in &g.
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Pridmore-Brown & Weber Equation

Expand
A=Ac+eA1+..., B=Byg+eB1+..., d=dg+d1+...

to find to leading order thBridmore-Brown equation™ in ®g.
We write. ®o(X, y) = Q(X)¥ (X, y),

QZ
(), (E-0) oo

with ¢ normalised and to be determined below.

*For linear profile — Weber's Parabolic Cylinder Equation: standard software.



Solvability Condition to Determine Amplitud®(X)

By considering a solvability condition for the next ordé( By, ®1) and
the usual manipulations we arrive at something like

DQx = f1Q — f2Qx.

with solution

_ h@
QX) = Qoexp(/ Sl ). J
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Solvability Condition to Determine Amplitud®(X)

By considering a solvability condition for the next ordé( By, ®1) and
the usual manipulations we arrive at something like

DQx = f1Q — f2Qx.

with solution

_ h@
Q(X) = Qoexp( / Sl ).

o For potential mean flow and potential perturbations theigt®asimple
adiabatic invariant leading to an elegant and simple expressiorJor

@ This is probably related to the existence afanserved energy
@ With vortical mean flow there iso conserved energy




A typical mean flow is described by the problem parameters
A=05 Dnhn=1 71n=02 F=04496 E =252 y =14,
(i.e. sheawj, = 0.5) and the geometry by

h(x)=1- %1 +tanhx), gx)=0, -3<x<3.

For the acoustic part we considered
@ 4 cut-on right-running modes with = 13.
@ 1 cut-on left-running mode with = 2.
@ 1 cut-on left-running mode with = 4.



Examples (mean flow)

10 ~ -
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Mean flowU andV in x, y-domain

The flow starts with a shear flow &fi, = 0.2+ 0.5y.



Examples (modal axial wave numbers)
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Axial wave numbers as function ofx.



Examples (modal axial wave numbers)
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Axial wave numbers as function ofx.

Question:k = 0 is “cut-off"?



Examples (animated snap shots of modes)
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Examples (animated snap shots of modes)
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Right-running modal pressure fields #r= 13 and radial mode numbar= 1, 2



Examples (animated snap shots of modes)

| 0 T
TNy

T UL R

TTTFT TT YT YT PR O Y %

r'm
SARARAR R R X

2N

Right-running modal pressure fields for= 13 and radial mode numbar= 1, 2, 3



Examples (animated snap shots of modes)
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Right-running modal pressure fields #or= 13 and radial mode numbar= 1, 2, 3, 4
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Examples (animated snap shots of modes)
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Left-running modal pressure fields for= 2



Examples (animated snap shots of modes)
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Left-running modal pressure fields fer= 2 andw = 4
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Interim conclusions

@ Slowly varying mean flow of linear shear has analytic solutio
@ A WKB solution of slowly varying modes in linear shear is pibs.
@ Turning point analysis tbd.

@ In contrast to the slowly varying modes in potential mean fltere is
no (simple) adiabatic invariant, and the solution requs@se
numerical after-care.
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Conclusions

©

Interaction of sound with mean flow vorticity.

Included by the Pridmore-Brown equation for modes
in parallel shear flow.

@ Instabilities, production of vorticity by mass source.

@ Regularisation of ill-posed boundary condition
for vanishing boundary layer.

@ Integrals of Pridmore-Brown modes produce
efficient new mode-matching method

@ Slowly varying modes are possible with shear flow,
although not with explicit adiabatic invariant.

©
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