
Duct modes in shear flow:
properties and applications

of the Pridmore-Brown equation

Sjoerd W. Rienstra

CEAA2016 - 4th International Workshop on
"Computational Experiment in AeroAcoustics"

Svertlogorsk, Kaliningrad, Russia

21-24 September 2016

1 / 64



Outline

1 Where is Pridmore-Brown

2 What is Pridmore-Brown

3 How to make Pridmore-Brown

4 An exact model with Pridmore-Brown

5 Vortical perturbations & Pridmore-Brown

6 New mode-matching method for Pridmore-Brown

7 Slowly varying Pridmore-Brown modes

8 Conclusion

2 / 64



Outline

1 Where is Pridmore-Brown

2 What is Pridmore-Brown

3 How to make Pridmore-Brown

4 An exact model with Pridmore-Brown

5 Vortical perturbations & Pridmore-Brown

6 New mode-matching method for Pridmore-Brown

7 Slowly varying Pridmore-Brown modes

8 Conclusion

3 / 64



Where

Turbo engine:

4 / 64



Where

Turbo engine:

APU:

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature

profile T0(r)
mean flow velocity

profile u0(r)

4 / 64



Outline

1 Where is Pridmore-Brown

2 What is Pridmore-Brown

3 How to make Pridmore-Brown

4 An exact model with Pridmore-Brown

5 Vortical perturbations & Pridmore-Brown

6 New mode-matching method for Pridmore-Brown

7 Slowly varying Pridmore-Brown modes

8 Conclusion

5 / 64



Origin

DAVID CLIFFORD PRIDMORE-BROWN developed in the paper

“Sound propagation in a fluid flowing through an attenuating duct”,
Journal of Fluid Mechanics, 4, 1958, pp 393 - 406.

an equation for 2D homentropic modal perturbations in 2D
compressible parallel shear flow: the Pridmore-Brown Equation.

It constitutes an eigenvalue problem for the modes.

Now we call the radially symmetric 3D version also a Pridmore-Brown
Equation, and for the general case (modes along any duct cross section)
the Generalised Pridmore-Brown Equation.
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Linearised Euler equations for perturbationsρ, p, v
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For mean parallel shear flowV 0 = U0(y, z)ex, the acoustic field reduces to:
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Boundary value problem

Pridmore-Brown equation forp(x, r, θ, t) = P(r ) eiωt−imθ−ikx

P′′ +
(

1

r
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c′
0

c0
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0

�

)

P′ +
(

�2

c2
0

− k2 − m2

r 2

)

P = 0

+
Boundary conditions

iωZ P′ = −ρ0�
2P at r = 1, P is regular atr = 0

=
Eigenvalue Problem ink

Countable set of modal solutions: Pmµ(r ) e−ikmµx

eigenfunctions: Pmµ(r )

eigenvalue (modal axial wavenumber): kmµ
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How do we find “all” modes:

Start with a simple configuration

Parameter continuation in
ImpedanceZ
Mean flow profileu0, c0
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Example of path-following

In duct, eigenvalueskmµ follows from impedance boundary condition.

Example∗ of path-following inZ : ∞ → ∞

Note the surface waves: instability

∗ with e−iωt -convention. . .
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Numerical results: eigenfunctions & eigenvalues
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(f) µ = 6

Eigenfunctions for upstream-running modes,ω = 25,m = 5,
Z = 2 − i , u0 = 2

3(1 − 1
2r 2), uniform temperature.

Note: modesµ = 1-4 confined to core. “Shooting” not possible.
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Numerical results: further tests

Test case borrowed from quantum-mechanical potential wellproblem:

Pridmore-Brown equation:

P′′ + β(r, k)P′ + γ (r, k)P = 0

Quantisation conditionbased on WKB-type (high-k) approximation
∫ r2

r1

√

γ (r, k)dr = (n − 1
2)π, n = 1,2, . . .

µ kQC knumerical

1 -60.470038 -60.4392
2 -55.761464 -55.7281
3 -51.134207 -51.0980 - 0.0000i
4 -46.605323 -46.5659 - 0.0003i
5 -42.195790 -42.1422 - 0.0212i
6 -37.931052 -37.5622 - 0.3254i

k’s for upstream-running modes.

Excellent agreement
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Animated mode patterns

Evidently, we obtain mode patterns like
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A canonical model for sound in sheared flow

Linearised Euler flow.

Uniform velocity profile with
finite boundary layers (shear).

Wall lined by impedance.

Point mass source.

Time-harmonic pressure field in Fourier representation

p(x, r, θ, t) = eiωt
∞
∑

m=−∞
e−imθ

∫ ∞

−∞
p̃m(r, k) e−ikx dk.

Pridmore-Brown equation for̃p and point mass source at(x, θ, r ) = (0,0, r0)

p̃′′+
(1

r
+ 2kU′

ω − kU
−ρ

′
0

ρ0

)

p̃′+
(

(ω−kU)2−k2−m2

r 2

)

p̃ = ω − U(r0)k

2π i r0
δ(r −r0)

U(1) = 0, p̃ regular inr = 0, impedance condition at wall.Singularity.
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Typical properties

Acoustic modes

Hydrodynamic instabilities and other surface waves

Critical layers∗ ω − kU = 0: modal phase speed = mean flow velocity

∗singularity→ branch point of complex logarithm ink-plane
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Overview of thek-plane (m fixed)

acoustic poleskmµ

branch cut

k0 (source in BL)

2 additional poles
k+ (instability);

k− (associated to branch cut)

causal integration contour
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Examples.M = 0.5,ω = 10,m = 0, Z = 2 − i

h = 0.001, r0 = 0.4, Z = 2 + i
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Interim conclusions

The contribution from the branch cut and its associated poleis very
minor unless all acoustic modes are cut-off. So it makes sense to use the
acoustic modes as a “complete” basis to construct a general solution.
Trailing vortices in boundary layer.

The relevance of the spatial instability.

The (related) question of the limit ofh → 0 (the Ingard-Myers limit):
the boundary condition withUwall = 0 changes to an equivalent
boundary condition forUwall finite.

iωZṽ =
(

iω + Uwall
∂

∂x

)

p̃

How physical is this?
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iωZṽ =
(

iω + Uwall
∂

∂x

)

p̃

How physical is this?
20 / 64



Interim conclusions

The contribution from the branch cut and its associated poleis very
minor unless all acoustic modes are cut-off. So it makes sense to use the
acoustic modes as a “complete” basis to construct a general solution.
Trailing vortices in boundary layer.

The relevance of the spatial instability.
The (related) question of the limit ofh → 0 (the Ingard-Myers limit):
the boundary condition withUwall = 0 changes to an equivalent
boundary condition forUwall finite.

iωZṽ =
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The Ingard-Myers boundary condition

In any reality,∃(perturbations) exciting other (complex) frequencies†

If h < hc, they include anabsolute instability ∼ eiω∗t (group velocity= 0),
while growth rate− Im(ω∗) → ∞ for h → 0.

This makes the problemill-posedin time (Brambley).

†If the problem is forced to betime-harmonic, there are no other than spatial instabilities.
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Condition for absolute instability

For mass-spring-damper impedance

Z = R + iωm + (iω)−1K , K = ρ0c2
0/L

dimensional arguments reveil that

hc =
(ρ0U∞

R

)2
U∞

√

m

K
× F

(

√
mK

ρ0U∞
,

R

ρ0U∞

)

≃ 1
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√

m
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With R = 2ρ0c0, L = 3.5 cm,m/ρ0 = 32 mm,U∞ = 60 m/s,
this is very, very small:hc = 10.5µm (less than a hair!).
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Outline

1 Where is Pridmore-Brown

2 What is Pridmore-Brown

3 How to make Pridmore-Brown

4 An exact model with Pridmore-Brown

5 Vortical perturbations & Pridmore-Brown

6 New mode-matching method for Pridmore-Brown

7 Slowly varying Pridmore-Brown modes

8 Conclusion
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Trailing vorticity from mass source

Compressible Euler equations with mass source and force

∂ρ

∂ t
+ ∇·(ρv) = ρQ, ρ

∂v

∂ t
+ ρ(v ·∇v)+ ∇ p = ρF

In barotropic fluid andω = ∇×v:

ρ
( ∂

∂ t
+ v ·∇

)(

ω

ρ

)

= ω ·∇v − ω

ρ
Q + ∇×F

Vorticity is only produced by non-conservative force fieldF,
or by mass source Q in mean vorticity.

24 / 64



Trailing vorticity from mass source

Compressible Euler equations with mass source and force

∂ρ

∂ t
+ ∇·(ρv) = ρQ, ρ

∂v

∂ t
+ ρ(v ·∇v)+ ∇ p = ρF

In barotropic fluid andω = ∇×v:

ρ
( ∂

∂ t
+ v ·∇

)(

ω

ρ

)

= ω ·∇v − ω

ρ
Q + ∇×F

Vorticity is only produced by non-conservative force fieldF,
or by mass source Q in mean vorticity.

24 / 64



Trailing vorticity from mass source

Compressible Euler equations with mass source and force

∂ρ

∂ t
+ ∇·(ρv) = ρQ, ρ

∂v

∂ t
+ ρ(v ·∇v)+ ∇ p = ρF

In barotropic fluid andω = ∇×v:

ρ
( ∂

∂ t
+ v ·∇

)(

ω

ρ

)

= ω ·∇v − ω

ρ
Q + ∇×F

Vorticity is only produced by non-conservative force fieldF,
or by mass source Q in mean vorticity.

24 / 64



Trailing vorticity from mass source

In 2D linear shear flow

If U = U0 + σy, ϕ̂ = 0 and harmonic point sourceQ = δ(x, y) eiωt ,
we have in the incompressible limit forz-componentωz = χ

(

iω + U
∂

∂x

)

χ̂ = σ

ρ0
δ(x, y)

with remarkably simple solution

χ̂ = σ

ρ0U0
H (x) e−ik0y δ(y), k0 = ω

U0

Trailing vorticity from a mass source in shear flow.
Hydrodynamic wavenumber k0.
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Examples.ω = 8,U ′ = σ = 6

free field

pressure u-velocity v-velocity
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free field

pressure u-velocity v-velocity
hard wall

pressure u-velocity v-velocity
impedance wallZ = 4 − 2i

pressure u-velocity v-velocity
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Scattering at hard-soft transition (by Wiener-Hopf)

pressure u-velocity v-velocity
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Scattering at hard-soft transition (by Wiener-Hopf)

pressure u-velocity v-velocity

far field (acoustic) pressure

U ′ < ω is essential. Field diverges forU ′ > ω, requiring a finite BL.
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Interim conclusions

A complete solution, including the branch cut contributions, is rarely
possible. It is shown that the Pridmore-Brown modes dominate and can
be used as approximate basis.

Thin boundary layer along impedance wall becomes absolute unstable,
with infinite growth rate for vanishing boundary layer (ill-posed).
A finite boundary layer regularises this.

A mass source in shear flow produces trailing vortices.
These may scatter and radiate into sound at hard-soft transitions.
The behaviour is radically different forω ≷ U ′.
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Mode matching: motivation

APU is typically a straight duct with strong (radial) temperature and
mean flow gradients, and sectioned, varying boundary conditions.

hard wall resistive sheet

liner cavity

cool air inlet

exhaust

temperature

profile T0(r)
mean flow velocity

profile u0(r)

“General” solution per section by sum over modes

pm(r, x) =
∞
∑

µ=1

[

A+
mµP+

mµ(r ) eik+
mµx +A−

mµP−
mµ(r ) eik−

mµx]

Typically suited for mode-matching approach.

New efficient and accurateMode-Matching methodbased on
exactintegrals of Pridmore-Brown modes.
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Classical mode-matching

Mode-Matching Basics

a
+

l

a
−

l

b
+

l

a
−

l+1
b
−

l+1

a
+

l+1

a
−

l−1

a
+

l−1

a
−

l+2

a
+

l+2

xl xl+1xl−1

Total field in segmentl : sum of left- and right-running waves

pl (x, r ) =
µmax
∑

µ=1

(

a+
l ,µP+

l ,µ(r ) eik+
l,µ(x−xl−1) +a−

l ,µP−
l ,µ(r ) eik−

l,µ(x−xl )
)

(same for velocity)

31 / 64



Classical mode-matching

Mode-Matching Basics

a
+

l

a
−

l

b
+

l

a
−

l+1
b
−

l+1

a
+

l+1

a
−

l−1

a
+

l−1

a
−

l+2

a
+

l+2

xl xl+1xl−1

At the interface atx = xl :

pl (r ) =
µmax
∑

µ=1

(

b+
l ,µP+

l ,µ(r )+ a−
l ,µP−

l ,µ(r )
)

.

(same for velocity)
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Continuity of pressure atx = xl leads to

pl (xl , r ) = pl+1(xl , r )
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Similar for continuity of axial velocity.
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Classical mode-matching

Mode-Matching Basics

a
+

l

a
−

l

b
+

l

a
−

l+1
b
−

l+1

a
+

l+1

a
−

l−1

a
+

l−1

a
−

l+2

a
+

l+2

xl xl+1xl−1

Results in linear system to be solved

[ EA+ EA−
EC+ EC−

] [Eb+
l

Ea−
l

]

=
[ EB+ EB−

ED+ ED−

] [Ea+
l+1

Eb−
l+1

]

.
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Computing inner products

Matrix entries are inner products

A±
νµ = (P±

l ,µ,9ν) =
∫ 1

0
P±

l ,µ(r )9ν(r )r dr

Note that for non-uniform flow:

P±
l ,µ is determined numerically

All inner-products have to be determined atall interfaces by quadrature

P±
l ,µ and9ν are oscillatory⇒ numerical problems

Problem

Computing inner products numerically is expensive / less accurate
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From Classical to a New Mode-matching method

Summary of new matching method

Classical (CMM) → New (NMM) mode-matching

(Pµ,9ν) → 〈Fµ,9ν〉

=
∫ 1

0
Pµ9νr dr → =

∫ 1

0

[

w1PµPν + w2UµPν

+w3(VµVν + WµWν)
]

r dr

quadrature → = i

kµ − kν

[

PνVµ − VνPµ
�ν

]

r=1

with 9ν = Jm(ανr ) with 9ν = Fν , Fµ = [Pµ,Uµ,Vµ,Wµ]
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expensive
less accurate

→ cheap
accurate
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Closed form integrals of 2D eigenmodes

Prototype example ofGeneralised Pridmore-Brown: Helmholtz equation

φ
(

∇
2ψ + β2ψ

)

= 0

ψ
(

∇
2φ + α2φ

)

= 0

on arbitrarily shaped cross-sectionA
Subtract and integrate overA

GAUSS
↓

(α2 − β2)

∫∫

A

φψ dS =

2D inner-product for Helmholtz eigenfunctions

〈〈φ,ψ〉〉 = 1

α2 − β2

∫

Ŵ

(φ∇ψ ·n − ψ∇φ ·n)dℓ,

for arbitrary boundary conditions onφ andψ

What if α = β andφ = ψ? Something similar.
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Closed form integrals of 1D eigenmodes

Circular duct: Helmholtz equation→ Bessel equation

Substitute into 2D inner-product:

φ = Jm(αr ) eimθ , ψ = Jm(βr ) e−imθ

1D inner-product of Bessel functions

〈Jm(αr ), Jm(βr )〉 =
∫ 1

0
Jm(αr )Jm(βr ) r dr

= 1

α2 − β2

[

β Jm(α)J
′
m(β)− αJ ′

m(α)Jm(β)
]

If α = β: something similar.
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Closed form integrals for Generalised P-B modes

By analogous manipulations . . .

Define vector of shape functionsF(y, z) =
[

P,U,V,W
]

P solution of Generalised PB equation,U,V,W follow from P

Similarly to 2D Helmholtz example, it can be found:

Closed form integral of parallel flow modes

〈〈F,F̃〉〉 =
∫∫

A

1

�̃

[(

u0

ρ0c2
0

+ k̃

ρ0�̃

)

P̃ P + ω

�̃
P̃U − ρ0u0(Ṽ V + W̃ W)

]

dS

= i

k − k̃

∫

Ŵ

P̃(V ny + Wnz)− (Ṽ ny + W̃nz)P

�̃
dℓ,

Something similar fork = k̃.
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Closed form integrals for radial Pridmore-Brown modes

Substitute for circular symmetric geometry. . .
modes of the formF(r ) e±imθ

F(r ) = [P(r ),U(r ),V(r ),W(r )]

P solution of the radial Pridmore-Brown equation

U,V,W follow from P

Exact integrals of radial Pridmore-Brown modes

〈F, F̃〉 =
∫ 1

0

1

�̃

[(

u0

ρ0c2
0

+ k̃

ρ0�̃

)

PP̃ + ω

�̃
U P̃ − ρ0u0(VṼ + WW̃)

]

r dr

= i

k − k̃

[

P̃V − Ṽ P

�̃

]

r=1

Weighted products of Pridmore-Brown eigenfunctions.
Something similar fork = k̃.
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New mode-matching

Classic mode-matching (CMM)

µl
∑

µ=1

b+
l ,µ(P

+
l ,µ,9ν)+ a−

l ,µ(P
−
l ,µ,9ν)

=
µl+1
∑

µ=1

a+
l+1,µ(P

+
l+1,µ,9ν)+ b−

l+1,µ(P
−
l+1,µ,9ν)

(same for velocity) with test functions (for example)

9ν = Jm(ανr )

Quadrature required for(Pµ,9ν) terms
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New mode-matching

New∗ (NMM) mode-matching

µl
∑

µ=1

b+
l ,µ〈F+

l ,µ,9ν〉 + a−
l ,µ〈F−

l ,µ,9ν〉

=
µl+1
∑

µ=1

a+
l+1,µ〈F+

l+1,µ,9ν〉 + b−
l+1,µ〈F−

l+1,µ,9ν〉

but now as test functions the same modes:

9ν = Fl ,ν

No extra calculationsand〈Fµ,9ν〉 in closed form

∗Technically not an inner-product, except for no flow or uniform flow.
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Numerical results

Comparing CMM and NMM
Test configurations

Length: 6.66

Radius: 1

hard wall – soft wall, interface atx = 3.33

µmax = 50 modes in both directions

Configuration I II III

Helmholtz &m ω = 13.86,m = 5 ω = 8.86,m = 5 ω = 15,m = 5

Temperature T0 = 1 T0 = 1 T0 = 2 log(2)(1 − r 2

2 )

Mean flow u0 = 0.5 · (1 − r 2) u0 = 0.3 · 4
3(1 − r 2

2 ) u0 = 0.3 · tanh(10(1 − r ))
Impedance Z = 1 − i Z = 1 + i Z = 1 − i

Incident mode µ = 1 µ = 1 µ = 2

39 / 64



Numerical results — Conf I: no-slip flow, uniform temp

Snap shot of pressure
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(a) Classical mode-matching.
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(b) New mode-matching.

Perfect match between NMM and CMM results
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Numerical results — Conf I: no-slip flow, uniform temp

Pressure atr = {0.233,0.5,1} m.
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Perfect match between NMM and CMM results

Similar for axial and radial velocities
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Numerical results — Energy balance

Energy balance (Myers’ Energy Corollary) vsµmax for conf. I
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Energy balance better with moreµ-modes.
NMM performs better than CMM!Why?
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Numerical results — Convergence of modal amplitudes

Edge Condition (a posteriori check)

It is reasonable to assume that for someq < 0 the amplitudes

Aµ = O(µq) for µ → ∞

so log|Aµ| = q logµ+ O(1). Then

qµ = log |Aµ|
logµ

→ q for µ → ∞

At the interface, at the wall (edge): boundary cond. discontinuous.
Field may be singular, but Power Flux must vanish at edge.

It can be shown that:

q < −1 ⇒ uniform convergence of modal series

⇒ edge condition satisfied
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Numerical results — Convergence of modal amplitudes

Do we haveq < −1 for numerical solutions?

q ≈ −2 ⇒ edge condition satisfied✓

Convergence ofqµ reveals inaccuracies of CMM amplitudes:

∗ NMM amplitudes aresmootherthan CMM asµ ∼ µmax,
becauseno quadrature inaccuraciesfor NMM.

∗ Explains energy behaviour.
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Interim conclusions

Classicmode-matching (CMM):

Uniform flow & temp:
Mode shapes are Bessel functions
Inner products are available in closed form

Parallel (non-uniform) flow & temp:
Mode shapes are Pridmore-Brown solutions (determined numerically)
Inner products require numerical quadrature
→ expensive & less accurate

Newmode-matching (NMM):

Parallel (non-uniform) flow & temp:
Mode shapes are Pridmore-Brown solutions (determined numerically)
Closed form expressions for “inner-products”cheaper
Solutions in very good agreement with CMM
NMM amplitudesmore accurate
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Epilogue

Epilogue
The success of NMM is, in a way, too good. At least far better than
expected, because the “inner-product” is not a proper inner-product
(unlessu0 = 0 or uniform) and we can’t be sure that it is able to single
out each modal contribution.

Nevertheless, from the success we can only conclude that it must be
“almost” an inner-product. The modes are all “seen” and distinguished.

The “inner-product” is not exactly an inner-product because the set of
discrete modes is not complete, i.e. not sufficient to constructany
possible solution. There is a “continuous” spectrum at the locus of
ω − ku0(r ) = 0. From the energy result we can (again) conclude that
this part is very small.

A fine task in functional analysis remains . . .
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Outline

1 Where is Pridmore-Brown

2 What is Pridmore-Brown

3 How to make Pridmore-Brown

4 An exact model with Pridmore-Brown

5 Vortical perturbations & Pridmore-Brown
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Slowly Varying Duct with Shear Flow

y = h(εx)

y = g(εx)

n

Duct

hard wall

hard wall
x

y

Sketch of geometry: 2-dimensional slowly varying hard-walled duct

Inviscid homentropic mean flow and harmonic perturbations

ṽ = V + Re(v eiωt ),

p̃ = P + Re(peiωt ),

ρ̃ = D + Re(ρ eiωt ).
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Mean Flow and Perturbations

Equations & boundary conditions for the mean flow

∇·(DV ) = 0, D(V ·∇)V = −∇P, C2 = γ P

D
,

V − gxU = 0 at y = g(εx), and V − hxU = 0 at y = h(εx).
∫ h

g
DU dy = F ,

Equations & boundary conditions for the linearised perturbations

iωρ + ∇·(Vρ + vD) = 0,

D
(

iω + V ·∇
)

v + D
(

v ·∇
)

V + ρ(V ·∇)V = −∇p,

p − C2ρ = 0.

v − gxu = 0 at y = g(εx), and v − hxu = 0 at y = h(εx).
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Slowly Varying Mean Flow

Make dimensionless.

Introduce slow variableX = εx.

For linear shear flowof the form

U(X, y) = τ (X)+ σ(X)(y − g(X)),

ananalytical solution exists.
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Slowly Varying Mean Flow (cntd.)

We have toO(ε2)

(DU)X + (DV )y ≃ 0,

D(UUX + V Uy)+ PX ≃ 0,

Py ≃ 0.

with a parameterised family of solutions

σ = λD

τ = F

D(h − g)
− 1

2λD(h − g).

The algebraic (Bernoulli-like) equation

1

2
τ2 + 1

γ − 1
Dγ−1 = E,

to be solved perX for D, for given fluxF , constantsλ, E and geometryg,h.
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Slowly Varying Modes

To leading order in mean flow we have for the perturbations

iωρ + Uρx + D(ux + vy) = −ε
[

ρ(UX + Vy)+ uDX + Vρy
]

,

iωu + Uux + vσ + D−1 px = −ε
[

−D−2DX p + UXu + V uy

]

,

iωv + Uvx + D−1 py = −ε
[

Vyv + Vvy
]

,

p − C2ρ = 0.

Substitute the WKB-Ansatz:

[u, v, p](x, y) = [A, B,8](X, y; ε) e−i
∫ x
κ(εξ ;ε)dξ

with slowly varying mode shapesA, B,8 and modal wave numberκ . . .
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Slowly Varying Modes (cntd.)

. . . to obtain toO(ε2)

i�8+ DC2(−iκA + By) = −ε
[

C2(UC−28+ DA)X + (V8)y
]

,

i�A + Bσ − iκD−18 = −ε
[

(D−18+ U A)X + V Ay

]

,

i�B + D−18y = −ε
[

U BX + (V B)y
]

,

with the Doppler-shifted frequency � = ω − κU.
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Pridmore-Brown & Weber Equation

Expand

A = A0 + εA1 + . . . , B = B0 + εB1 + . . . ,8 = 80 + ε81 + . . .

to find to leading order thePridmore-Brown equation in 80.

We write 80(X, y) = Q(X)ψ(X, y),

�2
(

80y

�2

)

y
+
(

�2

C2
− µ2

)

80 = 0

with ψ normalised andQ to be determined below.

∗For linear profile−→ Weber’s Parabolic Cylinder Equation: standard software.
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Solvability Condition to Determine AmplitudeQ(X)

By considering a solvability condition for the next order (A1, B1,81) and
the usual manipulations we arrive at something like

DQX = f1Q − f2QX .

with solution

Q(X) = Q0 exp
(

∫ X

0

f1(z)

D(z)+ f2(z)
dz
)

.

For potential mean flow and potential perturbations there exists asimple
adiabatic invariant, leading to an elegant and simple expression forQ.

This is probably related to the existence of aconserved energy.

With vortical mean flow there isno conserved energy.
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Examples

A typical mean flow is described by the problem parameters

λ = 0.5, Din = 1, τin = 0.2, F = 0.4496, E = 2.52, γ = 1.4,

(i.e. shearσin = 0.5) and the geometry by

h(x) = 1 − 1
8(1 + tanh(x), g(x) = 0, −3< x < 3.

For the acoustic part we considered

4 cut-on right-running modes withω = 13.

1 cut-on left-running mode withω = 2.

1 cut-on left-running mode withω = 4.
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Examples (mean flow)

Mean flowU andV in x, y-domain

The flow starts with a shear flow ofUin = 0.2 + 0.5y.
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Examples (modal axial wave numbers)
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ω =13 (4)

ω = 2

ω = 4

Axial wave numbersκ as function ofx.

Question:κ = 0 is “cut-off”?
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Examples (animated snap shots of modes)
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Right-running modal pressure fields forω = 13 and radial mode numbern = 1,2,3,4
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Examples (animated snap shots of modes)
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Interim conclusions

Slowly varyingmean flowof linear shear hasanalyticsolutions.

A WKB solution of slowly varying modes in linear shear is possible.

Turning point analysis tbd.

In contrast to the slowly varying modes in potential mean flow, there is
no (simple) adiabatic invariant, and the solution requiressome
numerical after-care.
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Conclusions

Interaction of sound with mean flow vorticity.

Included by the Pridmore-Brown equation for modes
in parallel shear flow.

Instabilities, production of vorticity by mass source.

Regularisation of ill-posed boundary condition
for vanishing boundary layer.

Integrals of Pridmore-Brown modes produce
efficient new mode-matching method

Slowly varying modes are possible with shear flow,
although not with explicit adiabatic invariant.
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