

Experimental aerodynamic and acoustic database of a 2D high lift wing with and without sweep angle

Eric Manoha (ONERA), Michael Pott-Polenske (DLR)

with contributions from Nicolas Réau (Dassault-Aviation)

Context and objectives

- Context: numerical prediction of high lift device flow/noise (slat & flap side edge)
- Objectives: to build reliable aerodynamic and acoustic data for the validation of high lift wing noise computations
- <u>Dissemination</u>: Benchmark for Airframe Noise Computations (BANC)

Projects	Airfoil	Sweep	Partners
LEISA2	2D	0°	Onera/DLR
SWAHILI	2D	30°	Onera/DLR
SWAHILI-FSE	3D with flap side edge	30°	Onera/DLR/Dassault-Aviation

High Lift Configuration DLR's F16 model

- Total "clean" chord (slat/flap retracted) : 300 mm
- Span: 800 mm (DLR/AWB) or 1.4 m (Onera/F2)
- Adjustables brackets on flap
- Non adjustables brackets on slat suction side (PIV, LDV access)
- Slat : Chord : 55.8 mm Deflection angle: 27.8°
- Flap : Chord : 84 mm Deflection angle: 35.0°

On-board instrumentation

- One section of 46 static pressure taps
- 12 Kulite pressure sensors at the wing leading edge

Model's family (same airfoil section)

- F16 option : VLCS (very long chord slat)
- F15 : chord 600 mm span 2400-2800 mm
- FTEG: chord 1200 mm span 6 8 m

2-facility strategy

- Constraint: very difficult to get aerodynamic and acoustic data in the same facility ...
- Strategy: 2-facility approach: Onera/F2 and DLR/AWB

- Closed test section 1.4 m x 1.8 m
- Aerodynamics : LDV, PIV, hotwire
- Acoustics: array with 120 condenser microphones

- Open test section 0.8 m x 1.2 m
- Acoustics:
 - Array with 96 Electret sensors
 - Line of 8 condenser microphones

Assumption: the flows will be globally different in both wind-tunnels, but we can minimize the differences in the slat region through adequate incidence adjustment

September 21-24, 2016, Svetlogorsk, Russia

Outline

- Context and objectives
- Airfoil characteristics
- 2-facility strategy
- LEISA2 database description
 - Aerodynamic tests in F2
 - Acoustic tests in AWB and F2
- SWAHILI and SWAHILI-FSE
 - Aerodynamic/acoustic tests in F2
 - Acoustic tests in AWB (in preparation)
- Conclusions

LEISA2 (2D airfoil without sweep) Aerodynamic measurements in F2

Flow streamlines visualizations with oil

Side wall flow

Slat brackets wake

Side wall flow

Separation on flap suction side

Acquisition of mean flow data by PIV 2D and LDV 2D

Acquisition of unsteady flow data using LDV2D and hotwire

LEISA2 (2D airfoil without sweep) Acoustic measurements in AWB

Microphone array and scan grid

Scan grid

- Planar, cartesian
- Located in the airfoil plane
- Span 0.8 m (airfoil area)
- Same resolution as in F2 (2 cm x 2 cm)
- Frequencies : [0-25 kHz] ∆f = 50.4 Hz

De-convoluted noise maps (DAMAS process)

LEISA2 (2D airfoil without sweep) Acoustic measurements in F2

Acoustic measurements in F2: microphone array at ceiling

Microphone

Rigid plate $h_1 = 4 \text{ mm}$ Metallic wiremesh

Microphone installation effects evaluation:

- Pressure doubling on rigid plate
- Wiremesh effect
- Source images on lateral walls and floor

De-convoluted noise maps (DAMAS process)

Comparison of acoustic data (AWB/F2) PSDs from noise maps (DAMAS) integrations on a central airfoil section with 0.24 m span

- Fair agreement on <u>broadband levels</u>
- Tones are present in both measurements, but with small frequency shifts and lower levels in the closed test section windtunnel

- LEISA2 database and documents (« Database Description » and « Problem Statement »
 - https://info.aiaa.org/tac/ASG/FDTC/DG/BECAN_files_/BANCIII.htm
 **DLP_Stat Noise Configuration"
 - → "DLR Slat Noise Configuration"
- E. Manoha and M. Pott-Polenske, "LEISA2: an experimental database for the validation of numerical predictions of slat unsteady flow and noise", AIAA Paper 2015-3137

SWAHILI: SWept Airfoil with High Lift SWAHILI – FSE: Flap Side Edge

- Model adaptation
 - Design/manufacture of 2D swept model by DLR
 - Design/manufacture of 2D/3D flap by Dassault-Aviation
- Aerodynamic/acoustic tests in F2 (Feb-May 2016)
- Acoustic tests in AWB (in preparation)

Design/manufacture of 2D swept model by DLR

Design/manufacture of 2D swept model by DLR

DLR: design and manufacture of wing and slat extensions
The onboard instrumentation is maintained: one section of static pressure
taps on slat (13) and wing (11), 12 Kulite sensors on wing

2D swept model in F2 windtunnel

2D swept model in F2 windtunnel

SWAHILI-FSE:

Design/manufacture of 3D flap by Dassault-Aviation (1/2)

SWAHILI-FSE:

Design/manufacture of 3D flap by Dassault-Aviation (1/2)

New 3-element flap equipped with:

- 2 sections of 11 static pressure taps
- 10 Kulite sensors on flap suction side (close to flap side edge) and on flap edges

F2 tests: Choice of reference flow conditions

1) Equivalent angle of attack

F2 tests: Choice of reference flow conditions 2) Equivalent flow velocity

	LEISA2 \rightarrow $\vee_{\scriptscriptstyle{\infty}}$	SWAHILI $\rightarrow V_{\infty}/\cos \beta$
Local pressure	Р	Р
Full airfoil area	$\mathbf{A} = \mathbf{C}_0.\mathbf{W}$	C_0 .W / cos $\beta > A$
Lift of full airfoil	$\mathbf{L} = P.C_0.W$	$P.C_0.W / \cos \beta > L$
Lift of central element	$L_s = P.C_0.S$	$P.C_0.S = L_s$

SWAHILI tests in F2: PIV 3C and LDV 2D

SWAHILI tests in F2: acoustics

SWAHILI (3D airfoil with sweep) Acoustic measurements in AWB (in preparation)

SWAHILI acoustic tests in AWB (in preparation)

Midspan cross-section at identical downstream position for both test cases

Conclusions

- Achievement of large aerodynamic/acoustic databases for the validation of CFD/CAA computations
- LEISA2 database (2D airfoil with 0° sweep angle)
 - → already available through the BANC (Benchmark for Airframe Noise Computations)
- SWAHILI (2D airfoil with 30° sweep angle)
- SWAHILI-FSE (flap side edge configurations)
 - → will be available in 2017 through BANC

