

Airframe Noise Modeling and Prediction

Yueping Guo NEAT Consulting Seal Beach, CA 90740 USA

September, 2016

Outline

- Introduction
- Noise Source Mechanism
- Physics Based Modeling
- Validation
- Summary

Challenges in Airframe Noise Research

- Strong aerodynamic and aeroacoustic coupling between components
 - Source flows determined by overall high lift system
 - Multiple reflection and scattering between components
- Scale and complexity of airframe structure
 - Full scale/full configuration tests very costly
 - Full-blown computation not feasible
- Scarcity of quality component data
 - Free field microphone data only for total noise
 - Potential engine noise in flight tests
 - Background noise and Reynolds number effects in WT
 - Uncertainties in component decomposition

Systematic Airframe Noise Research (777 Model)

NEAT Consulting

6.3% Scale Model Boeing Low Speed Aeroacoustic Facility 26% Scale STAR Model NASA Ames 40x80 ft Wind Tunnel **Full Scale** Boeing/NASA Quiet Technology Demonstrator (QTD1 and QTD2)

Dominant Airframe Noise Sources

Airframe Noise Components

Flap Side Edge Noise Sources

Flap Side Edge Noise Characteristics

Frequency Domain	Source Mechanism	Spectrum	Mach Scaling	Peak Directivity
Low	Vortex-Edge Interaction	Gradual Variation	5 th Power	Overhead
High	Shear Layer Instability	Fast Falloff	6 th Power	Forward Quadrant

Slat Noise Sources

	Cove	Gap	Bracket
Mechanism	Flow Separation	Vortex-Edge Scattering	Bluff Body Flow
Directivity	Dipole Normal to Chord	Half Dipole	Dipole Normal to Strut
Spectrum	Low and Mid Frequency	Mid and High Frequency	Mid and High Frequency
Mach Scaling	5 th to 6 th	5^{th} to 6^{th}	6 th to 7 th
Amplitude	AOA, Gap, M	AOA, Gap, M	Local Flow, Strut, M
Length Scale	Chord	Gap Width	Strut Size
Source Size	Chord \times Span	Width \times Span	Size × Length

Slat Noise Characteristics

- Boeing 777 flight test
- Certification conditions
- Broadband spectra
- Fifth power scaling for Mach number
- Spectral peak scaling on slat chord

- Wind tunnel test
- Peak radiation angle in aft quadrant
- Surface dipole radiation
- Trends confirmed by other data

Landing Gear Noise Sources

- Source mechanisms
 - Large scale separation
 - Flow/bluff body interaction
- •Length scales
 - Wheels: 50 ~ 100 inches
 - Struts: 5 ~ 10 inches
 - Dressings: 0.5 ~ 1 inch
- Strouhal number range: two decades
- Three spectral domains
 - Low frequency scaled on wheel size
 - Mid frequency scaled on main struts
 - High frequency scaled on small details

Landing Gear Noise Spectral Decomposition

Physics Based Modeling

Technical Approach

Prediction Model

$$\Pi(\mathbf{x}) = \rho_0^2 c_0^4 A(\alpha, \gamma, \sigma, b, S) W(M) F(f_d, M) D(\theta, \varphi) \frac{S}{\Delta^4 r^2} e^{-\alpha_0 r}$$

Feature	Model	Modeling Approach	
Ambient Medium	$(ho_0 c_0^2)^2$	Dimensional Analysis	
Amplitude	$A(\alpha,\gamma,\sigma,b,S)$	Correlation	
Mach Number	W(M)	OASPL Scaling	
Spectral Shape Function	$F(f_d, M)$	Source Statistics	
Doppler Shift	f_d	Analytical	
Directivity	D(heta, arphi)	Source Integration	
Source Dimension	S	Dimensional Analysis	
Convective Amplification	Δ^{-4}	Analytical	
Spherical Spreading	r^{-2}	Analytical	
Atmospheric Absorption	$e^{-lpha_0 r}$	Empirical	

Derivation of Slat Noise Spectrum

NEAT Consulting

$$\Pi = \iint_{\ell \ k_2} P_0(\mathbf{y}) \widetilde{\boldsymbol{\Phi}}_1(k_1) \widetilde{\boldsymbol{\Phi}}_2(k_2) \widetilde{\boldsymbol{\Psi}}(\boldsymbol{\omega}) \left| n_i \frac{\partial \widetilde{\boldsymbol{G}}_0}{\partial y_i} \right|^2 dk_2 d\ell$$

• Greens function

$$\frac{\left|\frac{\partial \tilde{G}_{0}}{\partial y_{i}}\right|^{2} \rightarrow k_{0}^{2} \text{ as } k_{0} \rightarrow 0}{\left|\tilde{G}_{0}\right|^{2} \rightarrow \frac{1}{k_{0}} \text{ as } k_{0} \rightarrow \infty} \right\} \longrightarrow \left|\frac{\partial \tilde{G}_{0}}{\partial y_{i}}\right|^{2} \sim \frac{k_{0}^{2}}{1 + \mu_{3}k_{0}}$$

• Temporal coherence

• Stream-wise spatial coherence

$$\Phi_{1}(\xi_{1}) = \exp\left(-2\pi \left|\frac{\xi_{1}}{\ell_{1}}\right| + 2\pi i \frac{f\xi_{1}}{U}\right) \longrightarrow \tilde{\Phi}_{1}(f) = \frac{1}{1 + \mu_{1}^{2}(1+M)^{2}St^{2}},$$

• Span-wise spatial coherence

Slat Noise Spectrum

 $F(f,M) = \frac{M^2 S^2}{(1+\mu_0^2 S^2)(1+\mu_1^2 (1+M)^2 S^2)(1+\mu_2^2 M^2 S_2)(1+\mu_3 M S)}$

- Depend on frequency and Mach number
- Proportional to f^2 at low frequencies
- Approximately f^{-2} at mid frequencies
- f^{-5} at very high frequencies
- No collapsing for all frequencies

- S = Strouhal Number
- M = Mach Number
- μ_i = Constants (*i* = 0,1,2,3)

Validation

- Component validation
 - Parametric trends
 - Component amplitude
- Systematic validation
 - Design variation
 - Test condition variation

Flap Noise Component Validation

Slat Noise Component Validation

NEAT Consulting

20

Landing Gear Noise Validation Database

Gear Model	Configuration	Number of Wheels	Scale	Test Facility	Data Source
Boeing 777	Isolated	6	6.3%	QFF	IJA 8(5)
Regional Jet	Isolated	2	40%	RTRI	AIAA 2010-3973
Airbus 320	Isolated	2	Full Scale	DNW	AIAA 1997-1597
Airbus 320	Isolated	4	Full Scale	DNW	AIAA 1997-1597
Boeing 737	Isolated	2	Full Scale	LSAF	J Aircraft 43(2)
Airbus 340	Isolated	4	Full Scale	DNW	AIAA 2000-1971
Boeing 777 QTD1	Installed	6 & 2	Full Scale	Flight	NASA Report 2002
Boeing 777 QTD2	Installed	6 & 2	Full Scale	Flight	AIAA 2007-3457
Boeing 747	Installed	4 & 2	Full Scale	Flight	J Aircraft 19(12)
DC-10-30	Installed	4 & 2	Full Scale	Flight	AIAA 1976-0525

Validation by QFF Data

Frequency (Hz)

Validation by LSAF Data

Validation by DNW Data

Dobrzynski, W., Chow, L.C., Guion, P. and Shiells, D. "A European Study on Landing Gear Airframe Noise Sources," *AIAA Paper 2000-1971*.

Validation by QTD2 Data

- Extensive research has significantly advanced the understanding of airframe noise sources
- Physics based modeling has been developed for airframe noise prediction
- Systematic validation has demonstrated the accuracy and robustness of the approach
- Physics based prediction has been the main tool used by the aircraft industry and research institutions