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(1) Design a new limiter for the discontinuous Galerkin finite element method that is 

simple, robust and accurate

(2a) The new limiter must not destroy the subcell resolution capability of the DG 

scheme, neither at discontinuities, nor in smooth regions, where it might have 

been erroneously activated, or, equivalently

(2b) The limiter must act on a characteristic length scale of h/(N+1) and not on the 

length scale h of the main grid, i.e. accuracy improves with N even at shocks

(3) The DG limiter should not contain problem-dependent parameters, like, e.g., 

the well-known parameter M of the classical TVB limiter of Cockburn and Shu. 

(4) The new limiter should work well for very high polynomial degrees, say N=9. 

(5) Ideally, the final DG scheme should become as robust as a traditional 

second order TVD finite volume scheme, but more accurate on a given 

computational mesh of characteristic mesh size h

Objectives
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Governing hyperbolic PDE system of the form 

(PDE)

with the vector of conserved variables Q and the nonlinear flux tensor F(Q). 

The discrete solution at time tn is represented by piecewise polynomials of

degree N over spatial control volumes Ti as 

Multiplication with a test function fk from the space of piecewise polynomias of 

degree N and integration over a space-time control volume Ti x [tn,tn+1] yields: 

Unlimited Fully Discrete One-Step ADER-DG Scheme

(DG)
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We then introduce the discrete solution (DG) and an element-local 

space-time predictor qh(x,t), together with a classical (monotone) 

numerical flux G, as it is used in Godunov-type finite volume schemes. 

The fully discrete one-step ADER-DG scheme then simply reads:  

But how to compute the space-time predictor qh(x,t), since at the beginning of a 

time step, only the discrete spatial solution uh(x,tn) at time tn is known? 

Use a weak integral form of the PDE in space-time and solve an element-local 

Cauchy problem in the small, with initial data uh(x,tn), similar to the MUSCL-

Hancock scheme or the ENO scheme of Harten et al. 

Unlimited Fully Discrete One-Step ADER-DG Scheme
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Rewrite the governing PDE in a reference coordinate system x-t on a reference

element TE:  

We introduce the two space-time integral operators

Element-local Space-time Predictor

The discrete space-time predictor solution and the discrete flux are defined as

nodal space-time basis ql
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Multiplication with a space-time test function and integration over the space-time

reference element TE x [0,1] yields: 

The initial condition uh(x,tn) is introduced in a weak sense after integration by 

parts in time (upwinding in time, causality principle):

Element-local Space-time Predictor

The above element-local nonlinear system is easily solved via the following 

fast-converging fixed-point iteration (discrete Picard iteration):
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• Motivation: develop a simple, robust and parameter-free limiter for DG that 

always works and which does not destroy the subcell resolution of DG

• Conventional DG limiters use either artificial viscosity, which needs parameters to 

be tuned, or nonlinear FV-type reconstruction/limiters (TVB, WENO, HWENO), 

which usually destroy the subcell resolution properties. 

• Our new approach: extend the successful a posteriori MOOD method of 

Loubère et al., developed in the FV context, also to the DG-FEM framework. 

• As very simple a posteriori detection criteria, we only use 

• A relaxed discrete maximum principle (DMP) in the sense of polynomials

• Positivity of the solution and absence of floating point errors (NaN)  

• If one of these criteria is violated after a time step, the scheme goes back to the 

old time step and recomputes the solution in the troubled cells, using a more 

robust ADER-WENO or TVD FV scheme on a fine subgrid composed of 2N+1 

subcells per space dimension

A new a posteriori limiter of DG-FEM methods
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• Classical DG limiters, like WENO/HWENO/slope/moment limiters are based 

on nonlinear data post-processing, while the new DG limiter recomputes 

the discrete solution with a more robust scheme, starting again from a valid 

solution available at the old time level

• Alternative description: dynamic, element-local checkpointing and 

restarting of the solver with a more robust scheme on a finer grid

• This enables the limiter even to cure floating point errors (NaN values 

appearing after division by zero or after taking roots of negative numbers) 

• The new method is by construction positivity preserving, if the underlying 

finite volume scheme on the subgrid preserves positivity

• Local limiter (in contrast to WENO limiters for DG), since it requires only 

information from the cell and its direct neighborhood 

• As accurate as a high order unlimited DG scheme in smooth flow regions, 

but at the same time as robust as a second order TVD scheme at shocks or 

other discontinuities, but also at strong rarefactions

A new a posteriori limiter of DG-FEM methods
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Classical TVB slope/moment limiting of DG

Xi i+1i-1
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If a classical nonlinear reconstruction-based DG limiter is activated erroneously,

there may be important physical information that is lost forever!
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A new a posteriori limiter of DG-FEM methods

DG polynomials of degree N=8 (left) and equivalent data representation 

on 2N+1=17 subcells (right). Arrows indicate projection (red) and reconstruction (blue)

We use 2N+1 subcells to match the DG time step (CFL<1/(2N+1)) on the 

coarse grid with the FV time step (CFL<1) on the fine subgrid. 
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A new a posteriori limiter of DG-FEM methods

Projection from the DG polynomials to the subcell averages

Reconstruction of DG polynomials from the subcell averages

Linear constraint: conservation

Overdetermined system, solved by a constrained LSQ algorithm.
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A posteriori detection criteria and DG-MOOD flowchart

Positivity:

Relaxed DMP in the sense of polynomials: 
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DMP in the sense of polynomials
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Summary of the ADER-DG-MOOD scheme

Verification of the DMP and the positivity on the candidate solution uh*(x,tn+1):

If a cell does not satisfy both criteria, flag it as troubled cell,                , discard the

DG solution and recompute it with a more robust third order ADER-WENO or an

even more robust second order TVD finite volume scheme on the fine subgrid:

Finally, reconstruct the DG polynomial from the subcell averages:

or
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2D Numerical Convergence Results P2-P9 (Euler)
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ADER-DG-MOOD Results

Sod shock tube,

20x5 elements (N=9)
Limited cells (red), 

Unlimited cells (blue)
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ADER-DG-MOOD Results

Lax shock tube,

20x5 elements (N=9)

Limited cells (red), 

Unlimited cells (blue)
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ADER-DG-MOOD Results

Shock-density interaction problem of Shu & Osher

40x5 cells (N=9). Unlimited cells (blue) and limited cells (red)
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Double Mach Reflection Problem

300x100 cells (N=2, 5, 9). Unlimited cells (blue) and limited cells (red)
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3D Spherical Explosion Problem

100³ cells (N=9), corresponding to 10 billion space-time degrees of freedom 

per time step. Unlimited cells (blue) and limited cells (red)
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Coupling of a posteriori subcell limiters for DG with AMR

ADER-DG (N=9) with AMR. Unlimited cells (blue) and limited cells (red) 
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Coupling of AMR with a posteriori subcell limiters for DG

ADER-DG (N=9) with a posteriori ADER-WENO subcell limiter 

and space-time adaptive mesh refinement (AMR) yields an 

unprecedented resolution of shocks and contact waves.  



M. Dumbser

23 / 30

A posteriori subcell finite volume limiting

of the Discontinuous Galerkin method
Università degli Studi di Trento

Laboratory of Applied Mathematics

Coupling of AMR with a posteriori subcell limiters for DG

Double Mach reflection problem using ADER-DG (N=9) with a posteriori ADER-

WENO subcell limiter and space-time adaptive mesh refinement (AMR) 
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Natural Extension to Unstructured Meshes

Subgrid for N=1 to N=6 in 2D
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Natural Extension to Unstructured Meshes

Subgrid for N=1 to N=5 in 3D
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Natural Extension to Unstructured Meshes

Circular explosion problem in 2D (N=5)
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Natural Extension to Unstructured Meshes

Double Mach reflection problem in 2D (N=4)
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Natural Extension to Unstructured Meshes

Spherical explosion problem in 3D (N=3)
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Natural Extension to Unstructured Meshes

Mach 3 flow over a sphere (N=3)
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• New, simple robust and accurate a posteriori subcell finite volume limiter for 

the discontinuous Galerkin finite element method 

• High order fully discrete one-step ADER time discretization 

• Available for uniform and space-time adaptive (AMR) Cartesian grids 

as well as for general triangular and tetrahedral unstructured meshes 

• The a posteriori MOOD framework of Loubère, Clain and Diot has been 

found to be an ideal framework to devise a simple and robust limiter for DG 

schemes

• Why a posteriori: It is much simpler to observe (and cure) the occurrence of a 

troubled cell rather than to predict (and avoid) its occurrence from given data. 

• Element-local checkpointing and solver restarting is even able to cure 

floating point errors (NaN, e.g. after division by zero)

• Future extension: Lagrangian-type DG schemes on unstructured ALE meshes

Conclusions


