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Ssummary

* Challenges of modelling in computational aeroacoustics

 CABARET solver for flow and noise modelling: our state-of-the art
 CABARET, dispersion improved version and flux correction possibilities
* Numerical examples: 1d and 2d test problems



Jet noise example: turbulent jet is a very non-efficient sound generator, less than ~
1/100,000th of its mechanical energy transforms into sound: effect of sound cancellation

Figure 1: Monopole. dipole and
quadrupole generating waves on the
surface of the water around a boat.

Hirshberg and Rienstra, 2004



Von Neumann linear analysis for linear wave
propagation

Represent the solution by a Fourier harmonics
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For real frequencies (A=real) the amplitude of simple waves is preserved



Dispersion error

due to
numerical
discretisation
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Comparison of linear dispersion errors of several
finite-difference schemes in terms of grid points
per wavelength (P.PW.)
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Basic CABARET for linear advection using

“active” conservation and flux variables
Goloviznin& Samarskii, 1998; Karabasov and Goloviznin, 2009
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Basic CABARET for linear advection using

“active” conservation and flux variables
Goloviznin& Samarskii, 1998; Karabasov and Goloviznin, 2009
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Examples of grids
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Time-stepping

Homogeneous

Asynchronous

g4l step



20 mln cell LES calculation on a snappy-hex mesh: 2GPU cards ~ 2 days simulate ~ 50 TUs
“per time step, 2 GPUs are about a factor 55 quicker than a code like
OpenFOAM on a 16-core cluster node”
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GPU Solver for Fast-Turn-Around Flow and Noise

Calculations: our state-of-the art
“HiFi prediction for validation of designs is mandatory”

Unstructured Hexagonal mesh + snappy-hexa + limited
number of 15t order tetras is possible (OpenFOAM format)

Some (old CPU) algorithms optimised for GPU usage

Some algorithms completely rewritten from scratch

Code is memory-optimised to fit on GPU and MPI-ed
2.2 mln mesh per GB memory (6 GB~13mln)

Asynchronous algorithm speeds-up computations
GPUs could do several magnitudes faster (>1000) than CPU
Same convergence rate of the original CABARET method
Decrease absolute error (CABARET’s optimal CFL condition)

Typical grids we can handle (2 K80 GPUs) =80-100 min cells,
typical run times (jet noise) = 2-4 days

FWH acoustic modelling post-processor
Goldstein acoustic analogy computation

Results easily visualised with ParaView



Goal: optimise CABARET for linear dispersion properties at small CFL
(ok to tolerate a few new calibration parameters so long as they are well defined!)

while preserving conservation & flux correction

CABARET with an artificial dispersion term

~ d3u /dx3
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Goloviznin and Samarskii, 1998
Dispersion coeffient: | =& (A-r)1-2r);

Characteristic equation:
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Non-dissipation (and stability) condition:
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Dispersion improved CABARET in the flux form

Goloviznin and Samarskii, 1998

E(@. —? +¢i1_¢ilj+ fi—fiy =0 where
T T hi hi 205(h|+h|_l);

e F =& (hihi—3Crhi+2C22'2);
f (0o _@>
Nis h, e =0.08




Dispersion improved CABARET in the flux form

Goloviznin and Samarskii, 1998

E(@u — O +¢i1_¢i1)+ fi—fi =0 where
2 T T hi hi 205(h|+h|_1);
F F* =¢ (hihi—Scrhi+202rzj;
¢ P — P _@/>
h.  h & =0.08

Extension to the vector case: (F=flux vector, U=vector variable, A=quasi-
linear matrix, W=local Riemann invariants, L= left eigen matrix )

F¥= AQU*; W* =L QU*; A=L AR L?

L ®F*= (LKARX LHR® L ® U* =A ® W*

W* ~d?2W /dx?; L ®F*~ A ® d?W /dx?

F*=L1®(L® F*)* L1 ® (L ®RA® L) ® d2W /dx?
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2D CABARET: predictor step
cell centre + cell face variables -> mid time level variables
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CABARET characteristic decomposition step,
extrapolation and solution of the Riemann
problem at the cell face in each grid direction
=the same!
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2D CABARET: corrector step
cell centre + cell face variables -> new time level

variables
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Flux correction: Full Flux Corrected
CABARET

o« The P-CAB scheme is not monotone and allows non-
physical oscillations.

o This is mitigated by applying a correction based on
the maximum principle at the extrapolation stage
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Flux correction: Relax Flux Corrected
CABARET

o The maximum principle limits are relaxed using a
tunable relaxation parameter (epsilon).

Mnew = (1+¢€)M mnew = (1 — €)m

if(M <0)Mnew = (1 —e)M if(m<0)mnew = (1+¢€)m



Flux correction: Modified Relax Flux
Corrected CABARET

o« The maximum principle limits are relaxed using a
tunable relaxation parameter (epsilon) and also the
local maxima and mimina.

(M — m)
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Mnew = M + €9,

mnew = m— €0,



Linear advection test#1: R-CAB,MR-CAB and DRP
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Linear advection test#2: R-CAB,MR-CAB and DRP
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Linear advection test#3: R-CAB, MR-CAB and DRP
schemes
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Test case#3 — floor
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Analytical test problem for CAA methods

Physics: acoustic wave propagation in a channel with periodic
side walls and uniform flow at M=0.5;

Model: polytropic & isothermal inviscid gas flow equations in
1D and 2D

Linear wave equation Linear wave equation with constant flow
0° , 0° , 0° 0 0,,0 0 , 0° , 0°
— p'—C, —— p'—C '=0 —-U —)(=-U —)p'—C —C '=0
a2’ axax T ayey” GG YT e ey’

. . : v itk x—k,-
Travelling wave solution p'~ p', o/t kexky )

Dispersion relations
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Planar wave (1D), 8ppw, CFL=0.1
-ull flux correction, origina\ CABARET
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Planar wave (1D), 8ppw, CFL=0.1
New relaxed flux correction (£=0.2), original

CABARE
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Planar wave (1D), 8ppw, CFL=0.1
New relaxed flux correction (€=0.2), dispersion
improved CABARE
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anar wave (1D), non-uniform grid, CFL . =0.8
ull flux correction, original CABARET
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Planar wave (1D), non-uniform grid, CFL __ =0.8

Max

New relaxed flux correction (€=0.2), original CABARET
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Planar wave (1D), non-uniform grid, CFL__ =0.8

—Max

New relaxed flux correction (£=0.2), dispersion
improved CABARE
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2D wave, CFL=0.1, ppw, ,={15,9}, atan(ky/kx):58O
Full flux correction, original CABARET

—e—CABARET —e—Analytical solutio
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2D wave, CFL=0.1, ppw, ,={15,9}, atan(ky/kx):58O
New relaxed flux correction (£=0.2), dispersion
improved CABARET
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2D wave, CFL=0.1, ppw, ,={15,9}, atan(ky/kx):58O
New relaxed flux correction (€=0.4), dispersion
improved CABARET

—e—CABARET —e—Analytical solution
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2D wave, CFL=0.1, ppw, ,={15,9}, atan(ky/kx):58O

New relaxed flux correction (€=0.4), standard
CABARET

—e—CABARET —e—Analytical solution
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Nonlinear planar wave (1D), 100ppw, C
New relaxed flux correction (£=0.2), dis
improved CABARE
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Nonlinear planar wave (1D), 100ppw, C
New relaxed flux correction (€=0.4), dis
improved CABARE
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Nonlinear planar wave (1D), 100ppw, CFL=0.1
No flux correction, ‘pure” CABARET
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p'lpy o

x/L



Conclusion

e Dispersion improved CABARET of Goloviznin and Samarskii (1998) is
extended to the compact two-time-level predictor-corrector form

* The compact formulation allows further generalisations to include non-
linear flux correction (including a new relaxed correction method) and
extensions to multiple dimensions with gas dynamics.

 Numerical solutions for 1d linear advection, 1d and 2d linear acoustic
propagation, and 1d non-linear z-wave propagation are considered

* A considerable increase in accuracy over the standard CABARET (not to
mention DRP;) is reported. In combination with the new relaxed correction
algorithm within a small range of calibration parameter €=0.2-0.4, superior
results are reported for both linear and nonlinear problems.

* Further work will be towards implementing the improved CABARET in the
current 3D GPU CABARET NS solver




Aeroacoustics of engineering flows: challenges

B
Faranosov et al. 2013 Morgans et a. 2005
Vorticity and acoustic pressure field of a turbulent jet  Acoustic pressure contours of a high-speed
helicopter blade
Aerodynamic scales << Acoustic scales
6 b.layer/D~ 0.01-0.001 L/D~100-1000

Acoustic fluctuations are so tiny that they are typically measured at log scale
(dB=10log,,(r.m.s.(p’)?/p,.)) -- the same as the human hearing works!



GPU CABARET: CPU VS GPU - 1 Billion challenge
- CPU only:

Simple up-scaling: ~50000 cores, ~0.6 MW, many “core hours”

Heavily resource bounded (power requirements,
communication infrastructure, only possible on a “national”
level, multi-million Dollar/Pound/Euro investment, or as part
of a large research grant

- GPU only:

- Likely memory bounded, GPUs have limited on-board memory
Current GPU-CABARET code can handle ~2 million cells per GB
Possible GPUs: AMD W9100 32GB / NVIDIA K80 24GB

Both sell for “only” $5,000 and we need 1e9/2e6=500 GB
GPUs needed: ~16 W9100 or ~20 K80s == $80,000-$100,000

This is a similar amount of money spent in a medium-sized
company on software licenses only!



Isothermal Static SILOET Jet

Two 20x10° cells grids: effect of the azimuthal
resolution

No
azimuthal
refinement

With
azimuthal
refinement




2D CABARET space stencil in grid coordinates
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2D CABARET: predictor step
cell centre + cell face variables -> mid time level variables

Time
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CABARET characteristic decomposition step,
extrapolation and solution of the Riemann
problem at the cell face in each grid direction
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2D CABARET: corrector step
cell centre + cell face variables -> new time level

variables
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Flux Correction directly based on the maximum principle

~n+1 n+1/2
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MILES approach: the capability of capturing sharp velocity -
gradients for smallest resolved scales emulates high- Diq

wavenumber end of the inertial subrange region
characterised by thin filaments of intense vorticity embedded

in a weak background vorticity
Fureby et al, Phys. Fluids 1997 & —@ @
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Planar wave (1D), 8ppw, CFL=0.1
New relaxed flux correction (€=0.4), dispersion
improved CABARE
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Planar wave (1D), non-uniform grid, CF

New relaxed flux correction (€=0.4), dis
improved CABARE
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