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Schemes on unstructured meshes
Schemes for solving Euler equations

Very high (3rd and higher) 

order methods
2nd order Godunov-type 

order methods
2 order Godunov-type 

methods

• Discontinious Galerkin

• FV polynomial-based

• SD, SV, etc.

• cell-centered schemes

• vertex-centered (edge-

based) schemes

• Very good accuracy for smooth solutions

• Enforcing monotonicity leads 
• Cheap
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• Enforcing monotonicity leads 

to loss of accuracy

• Very expensive, especially for problems with 

discontinuities

• Cheap

• Easy to realize

• Just 2nd order
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• Enforcing monotonicity leads 

to loss of accuracy

• Very expensive, especially for problems with 

discontinuities

• Cheap

• Easy to realize

• Just 2nd order

• Constructing new limiters, etc. • Increasing accuracy 

within 2nd order of accuracy



«Linear» scheme of T. Barth
• 1980th: idea of equipping P1-Galerkin method 

with artificial dissipation

• Roe [1] found a finite-volume interpretation of P1-Galerkin method

• Barth [2] used this result to construct a 2nd order scheme consisting • Barth [2] used this result to construct a 2nd order scheme consisting 

of linear reconstruction of variables and Godunov-type Riemann solver

• Now «Linear» scheme is an ancestor of most vertex-centered schemes
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[2] T. J. Barth, “A 3-D upwind Euler solver 

for unstructured meshes”, AIAA Paper 

No. 91-1548 (1991)

[1] P. L. Roe, “Error estimates for cell-vertex

solutions of the compressible Euler

equations”, ICASE report No. 87-6 (1987)

Barycentric control volumes define Vi and nij



Increasing accuracy of 2nd order schemes
Two main approaches based on «Linear» scheme of T. Barth

Quasi-1D approach Flux correction approachQuasi-1D approach Flux correction approach

• Keeps 1-exactness

• Uses quasi-1D reconstruction 

of variables

• TVD and WENO techniques

for discontinuities

• Makes 2-exactness 

(for smooth solutions)

• Uses spectral elements for 

gradient approximations

• TVD and SLIP limiters 

for discontinuities

• Reduces to 5th order FD scheme • 3rd order for steady problems
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• Reduces to 5th order FD scheme 

for uniform grid-like meshes

• Cheap

• 2nd order for unstructured meshes 

but better accuracy than «Linear» scheme

• 3rd order for steady problems

• 2nd order for unsteady 

problems with no accuracy 

improvement or complex 

dQ/dt term approximation 

with loss of conservation



Increasing accuracy of 2nd order schemes
Two main approaches based on «Linear» scheme of T. Barth

Edge-based approach Flux correction approach
UFC

Edge-based approach Flux correction approach

• Keep 1-exactness

• Use quasi-1D 

reconstruction 

of variables

• TVD and WENO 

approaches 

for discontinuities

• Keep 2-exactness 

(for smooth solutions)

• Use spectral elements for 

gradient approximations

• TVD and SLIP limiters 

for discontinuities

• 3rd order for steady problems

• Keep 2-exactness only for 

steady problems (for smooth 

solutions) and 1-exactness 

for unsteady

• Use spectral elements for 

gradient approximations

UFC
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for discontinuities
• 3rd order for steady problems

• 2nd order for unsteady 

problems with no accuracy 

improvement or complex 

dQ/dt term approximation 

with loss of conservation

gradient approximations

• TVD and SLIP limiters

• 3rd order for steady problems

• 3rd order for uniform grid-like meshes

• Still cheap

• 2nd order with less numerical error for 

unsteady problems



Desirable properties of Edge-based schemes

– 1 - conservation

– 2 - exactness on linear functions (1-exactness) 

– 3 – high (3rd-5th) order of accuracy on uniform structured  meshes– 3 – high (3 -5 ) order of accuracy on uniform structured  meshes

– 4 - 3rd order of accuracy for steady problems on arbitrary meshes

– 5 - 3rd order of accuracy for unsteady problems on arbitrary meshes

– 6 - significantly cheaper than very high order scheme

1 2 3 4 5 6

Linear scheme + + - - - +
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EBR, SEBR, MEV, NLV6, LV6, .. + + + - - +

UFC + + + + - +

steady FC + + - + - +

FC modifications of  Nishikawa, 

Pincock

- + + + + -
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Katz A., and Sankaran V., “An Efficient Correction Method to Obtain a Formally Third-Order Accurate 

Flow Solver for Node-Centered Unstructured Grids,” Journal of Scientific Computing, Vol. 51, 2012
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Construction of the UFC scheme
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UFC scheme on TS meshes: – 3rd order of accuracy

UFC scheme on arbitrary 

simplicial mesh:

1. Scheme must be conservative

2. Scheme must be 1-exact

3. must coincide with on TS-meshes
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2D and 3D numerical results

Linearized Euler equations,   Gaussian pulse evolution
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Scheme EBR3 EBR5
Steady

FC
UFC

Maximal 

norm

h=1

h=0.5

h=0.25

num. order

1.73289e-003

2.28420e-004

2.89376e-005

2.98

6.24980e-005

2.05613e-006

7.16193e-008

4.84

5.03122e-003

1.30860e-003

3.28580e-004

2.00

6.57931e-004

6.86734e-005

7.22010e-006

3.25

Triangular

TS-meshes

Integral 

norm

h=1

h=0.5

h=0.25

num. order

2.77561e-004

3.55518e-005

4.45939e-006

3.00

9.39937e-006

3.01253e-007

1.13177e-008

4.73

7.23611e-004

1.85495e-004

4.67779e-005

1.99

5.43120e-005

5.04358e-006

6.59735e-007

2.93

Maximal 

norm

h=1

h=0.5

h=0.25

h=0.125

h=0.0625

num. order

2.2576e-003

4.42802e-4

8.08705e-5

1.72135e-5

4.76772e-6

1.85

1.08382e-003

2.69707e-4

7.52786e-5

1.85921e-5

5.46002e-6

1.76

5.47836e-003

1.32e-3

3.2483e-4

7.98531e-5

1.97773e-5

2.01

7.63247e-4

1.70302e-4

3.94256e-5

1.10177e-5

2.87777e-6

1.94

Quasi-uniform

unstructured

triangular

meshes
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num. order 1.85 1.76 2.01 1.94

Integral 

norm

h=1

h=0.5

h=0.25

h=0.125

h=0.0625

num. order

2.78876e-004

3.10223e-005

4.33573e-06

6.89182e-07

1.39072e-07

2.31

7.10360e-005

1.24319e-005

2.91023e-06

7.42516e-07

1.85712e-07

2.00

7.50898e-004

1.79015e-004

4.51444e-05

1.13290e-05

2.81990e-06

2.01

6.00207e-005

6.97642e-006

1.53294e-06

3.95812e-07

9.91140e-08

2.00

meshes
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Solution convergence on triangular meshes: 

unstructured mesh versus TS-mesh (of the same color in dash)
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Tetrahedral

TS-meshes

Scheme EBR3 EBR5 Steady FC UFC

Maximal 

norm

h=1

h=1/2

num. order

6.71e-3

9.71e-4

2.79

7.41e-4

2.63e-5

4.84

1.15e-2

2.75e-3

2.06

4.10e-3

5.14e-4

3.00

Integral norm h=1

h=1/2

1.66e-3

2.31e-4

1.59e-4

7.71e-6

3.12e-3

8.03e-4

9.78e-4

1.21e-4

Quasi-uniform

unstructured

tetrahedral

meshes

h=1/2

num. order

2.31e-4

2.85

7.71e-6

4.88

8.03e-4

1.96

1.21e-4

3.01

theor. order 3 5 2 3

Scheme EBR3 EBR5 Steady FC UFC

Maximal 

norm

h=1

h=1/2

h=1/4

num. order

4.79e-3

6.54e-4

1.04e-4

2.65

1.82e-3

4.36e-4

1.09e-4

2.41

1.39e-2

3.21e-3

7.68e-4

2.00

2.82e-3

3.51e-4

5.99e-5

2.55

Integral norm h=1

h=1/2

7.23e-4

9.70e-5

2.50e-4

5.15e-5

2.35e-3

6.02e-4

4.45e-4

5.70e-5
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meshesh=1/2

h=1/4

num. order

9.70e-5

1.37e-5

2.94

5.15e-5

1.24e-5

2.03

6.02e-4

1.51e-4

2.01

5.70e-5

8.22e-6

2.79

theor. order 2 2 2 2
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Conclusion
We have presented the Unsteady flux correction (UFC) method.

At this point we have developed the scheme for smooth solution only.

For linear case the UFC scheme is:

• conservative;

• of second order on arbitraty meshes;

• of third order on uniform grid-like meshes;

• of third order on steady problems;

• as cheap as the original steady FC method.
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FC scheme is easy to realize and need no geometry preprocessing 

so it is well suitable for solving problems on deforming meshes.


