

Continuously Variable Fidelity Adaptive Large Eddy Simulation*

OLEG V. VASILYEV[†], ALIREZA NEJADMALAYERI^{†,} & GIULIANO DE STEFANO[‡]

[†]Department of Mechanical Engineering, University of Colorado, Boulder, CO USA [‡]Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Università di Napoli, Italy

*Partially supported by DOE, NSF and NASA Langley

International Workshop "Computational Experiment in Aeroacoustics", September 26, 2014

Motivation

Motivation

Where is aeroacoustics?

Motivation

Where is aeroacoustics?

- Accuracy of aeroacoustic calculations depends how accurately the velocity field is predicted.
- Most of the flows of interest are turbulent.
- Modeling turbulence is the essential and often most important part of an aeroacoustic calculation.

- Motivation
 - New paradigm of direct physics-based coupling of adaptive numerical methods & turbulence models
- Wavelets and their basic properties
- Adaptive wavelet collocation method
- Hierarchy of Turbulence Modeling
 - Wavelet-Based Direct Numerical Simulations (WDNS)
 - Coherent Vortex Simulation
 - Stochastic Coherent Adaptive Large Eddy Simulations
 - Low-Fidelity Approaches
- Relationship of wavelet and other methods
- Computational Complexity of Turbulent Flows
- Examples
- Conclusions and Perspectives

At-a-Glance Comparison of DNS, LES, RANS

Taken From – Prof. D. Veynante Lecture Note – (without permission) ERCOFTAC SIG4 Summer School on "Turbulence and Mixing in Compressible Flows", Strasbourg, France, 7-11 July 2005

 Use a low pass filter to separate the large scale eddies from the small subgrid scales.

$$\mathbf{u}(\mathbf{x},t) = \overline{\mathbf{u}}(\mathbf{x},t) + \mathbf{u}'(\mathbf{x},t)$$

Simulate the evolution of the large scale vorticies, while modeling the effect of the small subgrid scales.

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i}{\partial x_j \partial x_j} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Defficiencies of Classical LES:

- Does not take advantage of spatial/temporal intermittency of turbulent flows
- Inhomegeneous fidelity
 - *a-priori* large/small scale separation
 - under-resolves energetic structures
 - over-resolves in between them

New direction/philosophy/paradigm:

Direct physics-based **coupling** of

adaptive high order numerical methods & turbulence models

that takes advantage of spatio-temporal intermittency of turbulent flows

- the active control of the fidelity/accuracy of the simulation
- near optimal spatially adaptive computational mesh
- the "desired" flow-physics is captured by considerably smaller number of spatial modes $Re^{\alpha}, \ \alpha < 9/4$
- considerably smaller Reynolds scaling exponent,
- robust general mathematical framework for spatial/temporal model-refinement (*m*-refinement) that can be extended to LES with AMR approach
- new mathematical framework for epistemic uncertainty quantification

Adaptive Wavelet Collocation Method

Adaptive Wavelet Collocation Method (AWCM)

Single-mode Rayleigh-Taylor Instability (incompressible limit)

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 11

Mechanical Engineering Multi-Scale Modeling & Simulation Laboratory

DEPARTMENT OF

Adaptive Wavelet Collocation Method (AWCM)

Single-mode Rayleigh-Taylor Instability (incompressible limit)

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 11

Mechanical Engineering Multi-Scale Modeling & Simulation Laboratory

DEPARTMENT OF

Multiple obstacles with prescribed motion

SIMULATION LABORATORY

Multiple obstacles with prescribed motion

SIMULATION LABORATORY

Shock Wave Propagation through the Cylinder Array

Shock Wave Propagation through the Cylinder Array

SIMULATION LABORATORY

Acoustic Timescale Detonation Initiation

SIMULATION LABORATORY

Acoustic Timescale Detonation Initiation

Hierarchical Variable Fidelity Multiscale Turbulence Modeling

Coherent Vortex Extraction*

$$\omega = \omega_C + \omega_I$$

• optimal threshold from denoising theory[†]: $\epsilon_{opt} = \sigma_n \sqrt{2 \ln N}$

• σ_n is variance of incoherent vorticity

*Farge M, Schneider K, Kevlahan N. 1999. Phys. Fluids 11:2187–201 †Donoho DL, Johnstone IM. 1994. Biometrika 81:425–55

 $\omega = \omega_C + \omega_I$

- Homogenous isotropic turbulent flow at $R_{\lambda} = 732$ and resolution $N = 2048^3$
- subcubes of size N = 256³ are visualized

*Okamoto N, Yoshimatsu K, Schneider K, Farge M, Kaneda Y. 2007. Phys. Fluids 19:115109

Coherent Vortex Extraction*

```
\omega = \omega_C + \omega_I
```


• Homogenous isotropic turbulent flow at $R_{\lambda} = 732$ and resolution $N = 2048^3$

• subcubes of size $N = 256^3$ are visualized

*Okamoto N, Yoshimatsu K, Schneider K, Farge M, Kaneda Y. 2007. Phys. Fluids 19:115109

$$\overline{u}_{i}^{>\epsilon}(\mathbf{x}) = \sum_{\mathbf{l}\in\mathcal{L}^{0}} c_{\mathbf{l}}^{0}\phi_{\mathbf{l}}^{0}(\mathbf{x}) + \sum_{j=0}^{+\infty} \sum_{\mu=1}^{2^{n}-1} \sum_{\mathbf{k}\in\mathcal{K}^{j} \atop |d_{\mathbf{k}}^{j}| \geq \epsilon ||\mathbf{u}||$$

$$\overline{u}_{i}^{>\epsilon}(\mathbf{x}) = \sum_{\mathbf{l}\in\mathcal{L}^{0}} c_{\mathbf{l}}^{0}\phi_{\mathbf{l}}^{0}(\mathbf{x}) + \sum_{j=0}^{+\infty} \sum_{\mu=1}^{2^{-1}} \sum_{\mathbf{k}\in\mathcal{K}^{j}} \frac{\sum_{\mathbf{k}\in\mathcal{K}^{j}} d_{\mathbf{k}}^{\mu,j}\psi_{\mathbf{k}}^{\mu,j}(\mathbf{x})}{|d_{\mathbf{k}}^{j}| \geq \epsilon ||\mathbf{u}||}$$

$$\overline{u}_{i}^{>\epsilon}(\mathbf{x}) = \sum_{\mathbf{l}\in\mathcal{L}^{0}} c_{\mathbf{l}}^{0}\phi_{\mathbf{l}}^{0}(\mathbf{x}) + \sum_{j=0}^{+\infty} \sum_{\mu=1}^{2^{n}-1} \sum_{\mathbf{k}\in\mathcal{K}^{j} \atop |d_{\mathbf{k}}^{j}| \ge \epsilon ||\mathbf{u}||$$

$$\mathbf{u}(\mathbf{x},t) = \overline{\mathbf{u}}^{>\epsilon}(\mathbf{x},t) + \overline{\mathbf{u}}^{\le\epsilon}(\mathbf{x},t)$$

$$\overline{u}_{i}^{\epsilon}(\mathbf{x}) = \sum_{\mathbf{l}\in\mathcal{L}^{0}} c_{\mathbf{l}}^{0}\phi_{\mathbf{l}}^{0}(\mathbf{x}) + \sum_{\boldsymbol{j}=0}^{+\infty} \sum_{\boldsymbol{\mu}=1}^{-\infty} \sum_{\mathbf{k}\in\mathcal{K}^{\boldsymbol{j}}} \frac{\sum d_{\mathbf{k}}^{\boldsymbol{\mu},\boldsymbol{j}}\psi_{\mathbf{k}}^{\boldsymbol{\mu},\boldsymbol{j}}(\mathbf{x})}{|\boldsymbol{d}_{\mathbf{k}}^{\boldsymbol{j}}| \geq \epsilon \|\mathbf{u}\|}$$

Choice of
$$\epsilon$$
:

$$(\mathbf{x},t) = \overline{\mathbf{u}}^{>\epsilon}(\mathbf{x},t) + \overline{\mathbf{u}}^{\le\epsilon}(\mathbf{x},t)$$

- WDNS $\epsilon \ll 1$
- CVS^{*} $\epsilon \approx \epsilon_{opt}$ SCALES[†] $\epsilon > \epsilon_{opt}$

*Coherent Vortex SImulation (CVS): Farge M, Schneider K, Kevlahan N. Phys. Fluids 11:2187–201, 1999. [†]Stochastic Coherent Adaptive Large Eddy Simulations (SCALES): Goldstein, D.E. and Vasilyev, O.V., Phys. Fluids 16: 2497-2513, 2004.

u

Wavelet-based Turbulence Modeling Hierarchy

Wavelet thresholding filter:

*Coherent Vortex SImulation (CVS): Farge M, Schneider K, Kevlahan N. Phys. Fluids 11:2187–201, 1999. [†]Stochastic Coherent Adaptive Large Eddy Simulations (SCALES): Goldstein, D.E. and Vasilyev, O.V., Phys. Fluids 16: 2497-2513, 2004.

$$\overline{u}_{i}^{>\epsilon}(\mathbf{x}) = \sum_{\mathbf{l}\in\mathcal{L}^{0}} c_{\mathbf{l}}^{0}\phi_{\mathbf{l}}^{0}(\mathbf{x}) + \sum_{j=0}^{+\infty} \sum_{\mu=1}^{2^{-1}} \sum_{\mathbf{k}\in\mathcal{K}^{j}} \frac{\sum_{\mathbf{k}\in\mathcal{K}^{j}} d_{\mathbf{k}}^{\mu,j}\psi_{\mathbf{k}}^{\mu,j}(\mathbf{x})}{|d_{\mathbf{k}}^{j}| \geq \epsilon \|\mathbf{u}\|}$$

Simulate the evolution of the most energetic coherent vortices (track them), while modeling the effect of the subgrid scales.

$$\frac{\partial \overline{u}_i^{>\epsilon}}{\partial t} + \frac{\partial \overline{u}_i^{>\epsilon} \overline{u}_j^{>\epsilon}}{\partial x_j} = -\frac{\partial \overline{p}^{>\epsilon}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i^{>\epsilon}}{\partial x_j \partial x_j} + \frac{\partial \tau_{ij}}{\partial x_j}$$

 Use wavelet thresholding filter to separate the numerically significant flow structures from the insignificant ones.

$$\mathbf{u}(\mathbf{x},t) = \overline{\mathbf{u}}^{>\epsilon}(\mathbf{x},t) + \overline{\mathbf{u}}^{\le\epsilon}(\mathbf{x},t)$$

Wavelet threshold is set to sufficiently small value ($\epsilon \ll 1$), so the ignored scales are insignificant and no model is necessary.

$$\frac{\partial \overline{u}_i^{>\epsilon}}{\partial t} + \frac{\partial \overline{u}_i^{>\epsilon} \overline{u}_j^{>\epsilon}}{\partial x_j} = -\frac{\partial \overline{p}^{>\epsilon}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i^{>\epsilon}}{\partial x_j \partial x_j} + \underbrace{\partial \tau_j}{\partial x_j}$$

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 22

Wavelet-based Direct Numerical Simulation

 Use an "ideal" wavelet thresholding filter to separate the energetic coherent vortices from the "incoherent Gaussian" subgrid scales at each time step.

$$\omega(x,t) = \omega_{\geq}(x,t) + \omega_{<}(x,t)$$

Simulate the evolution of the coherent vortices, (track them), while modeling the effect of the "incoherent Gaussian" subgrid scales.

$$\frac{\partial \omega_{i\geq}}{\partial t} + u_{j\geq} \frac{\partial \omega_{i\geq}}{\partial x_{j}} = \omega_{j\geq} \frac{\partial u_{i\geq}}{\partial x_{j}} + \frac{1}{Re} \frac{\partial^{2} \omega_{i\geq}}{\partial x_{j} \partial x_{j}} + M_{i}$$

*Farge M, Schneider K, Kevlahan N. 1999. Phys. Fluids 11:2187–201

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 23

Coherent Vortex Simulation
Use wavelet thresholding filter to separate the most energetic coherent vortices from the subgrid scales.

$$\mathbf{u}(\mathbf{x},t) = \overline{\mathbf{u}}^{>\epsilon}(\mathbf{x},t) + \overline{\mathbf{u}}^{\le\epsilon}(\mathbf{x},t)$$

Simulate the evolution of the most energetic coherent vortices (track them), while modeling the effect of the subgrid scales.

$$\frac{\partial \overline{u}_i^{>\epsilon}}{\partial t} + \frac{\partial \overline{u}_i^{>\epsilon} \overline{u}_j^{>\epsilon}}{\partial x_j} = -\frac{\partial \overline{p}^{>\epsilon}}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 \overline{u}_i^{>\epsilon}}{\partial x_j \partial x_j} + \frac{\partial \tau_{ij}}{\partial x_j}$$

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 24

Stochastic Coherent Adaptive

Large Eddy Simulation

SCALES Dissipation

SC LES Dissipation

Dependency Diagram – SCALES

14

Kinetic Energy Based:
$$\mathcal{F} = \frac{k_{\text{sgs}}}{k_{\text{res}} + k_{\text{sgs}}}$$

SGS dissipation Based:
$$\mathcal{F} = \frac{\Pi}{\varepsilon_{res} + \Pi}$$

- Kinetic Energy Based: $\mathcal{F} = \frac{k_{\text{sgs}}}{k_{\text{res}} + k_{\text{sgs}}}$
- SGS dissipation Based: $\mathcal{F} = \frac{\Pi}{\varepsilon_{res} + \Pi}$
- Fidelity of the simulation is a function of Turbulence Resolution
- Objective control the level of fidelity

Kinetic Energy Based:
$$\mathcal{F} = \frac{k_{\text{sgs}}}{k_{\text{res}} + k_{\text{sgs}}}$$

SGS dissipation Based:
$$\mathcal{F} = \frac{\Pi}{\varepsilon_{res} + \Pi}$$

Kinetic Energy Based: $\mathcal{F} = \frac{k_{\text{sgs}}}{k_{\text{res}} + k_{\text{sgs}}}$

SGS dissipation Based: $\mathcal{F} = \frac{\Pi}{\varepsilon_{res} + \Pi}$

Homogeneous Turbulence:

LES with \mathcal{F}_{KE} fixed complexity $\sim Re^0 = 1$ LES with \mathcal{F}_D fixed complexity $\sim Re^{9/4}$

Spatial Variable Thresholding

Lagrangian "Variable Thresholding" SCALES

$$\begin{split} \partial_t \epsilon + \overline{u}_j^{>\epsilon} \partial_{x_j} \epsilon &= -\mathrm{forcing}_{\mathrm{term}} + \nu_\epsilon \partial_{x_j x_j}^2 \epsilon \\ &\text{forcing}_{\mathrm{term}} = \epsilon^{\mathrm{old}} \left(\mathbf{x} - \overline{\mathbf{u}}^{>\epsilon} \Delta t, t \right) \frac{1}{\tau_\epsilon} \left(\mathcal{F} - \mathcal{G} \right) \\ &\mathcal{F} = \frac{\Pi}{\varepsilon_{\mathrm{res}} + \Pi} \\ &\tau_\epsilon = \left| \overline{S}_{ij}^{>\epsilon} \right|^{-1} \\ &\nu_\epsilon \left(\mathbf{x}, t \right) = C_{\nu_\epsilon} \Delta^2 \left(\mathbf{x}, t \right) \left| \overline{S}_{ij}^{>\epsilon} \right| \\ \end{split}$$
numerical diffusion time-scale: $\tau_\epsilon \qquad > \quad \mathrm{convective time-scale:} \frac{\Delta^2}{\nu_\epsilon} \\ &C_{\nu_\epsilon} < 1 \end{split}$

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 30

Spatial Variable Thresholding

Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity)

Time Varying Goal Benchmark

$$\langle \mathcal{F}
angle = rac{\langle \Pi
angle}{\langle arepsilon_{ ext{res}}
angle + \langle \Pi
angle}$$

Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity)

Time Varying Goal Benchmark

Interpolation Approach

Hybrid CVS / SCALES – Threshold Animation

Hybrid CVS / SCALES – Threshold Animation

Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity)

Time Varying Goal Benchmark

Solving Evolution Equation Directly

Hybrid WDNS/CVS/SCALES (Hierarchical Multiscale Adaptive Variable Fidelity)

m-SCALES

Computational Complexity or Reynolds Number Scaling

• Threshold parameter ϵ is significantly small

Computational Complexity*

• Studied: *3 × 10¹ < Re < 10⁵*

- Number of grid points (\mathcal{N}) scales like $Re^{1/2}$
- Δt scales like Re^{-1/2}

*Kevlahan NKR, Vasilyev OV. 2005. SIAM J. Sci. Comput. 26:1894–915

Computational Complexity

- Computational Complexity ($\mathcal{N}/\Delta t$) scales like *Re*.
- Improvement on standard scaling estimate of *Re^{9/4}*.
 (for 2D turbulence based on Kolmogorov scale)

*Kevlahan NKR, Vasilyev OV. 2005. SIAM J. Sci. Comput. 26:1894–915

Space-time Modes in 2D Turbulence*

Re =2530

Re =5050

Re =10100

Re =20200

Re =40400

Space-time Modes in 2D Turbulence*

- 2D decaying turbulence 1 260 $\leq Re \leq$ 40 400.
- The non-intermittent computational estimate: $\mathcal{N} \sim Re^{3/2}$
- Mathematical upper bound: $\mathcal{N} \sim Re^{2}$

*Kevlahan NKR, Alam JM, Vasilyev OV. 2007. J. Fluid Mech. 570:217–26

Are similar trends observed for 3-D turbulence?

Time-Averaged Energy Spectra – CVS and SCALES

Mechanical Engineering Multi-Scale Modeling & Simulation Laboratory

Time-Averaged Energy Spectra -CVS and SCALES

Computational Complexity –

Computational Complexity –

Computational Complexity -

DEPARTMENT OF MECHANICAL ENGINEERING MULTI-SCALE MODELING & SIMULATION LABORATORY

Computational Complexity –

Fraction SGS Dissipation – SCALES

Computational Complexity -Different G

$$\langle \mathcal{F} \rangle = \frac{\langle \Pi \rangle}{\langle \varepsilon_{\rm res} \rangle + \langle \Pi \rangle}$$

Computational Complexity – Different *G*

$$\langle \mathcal{F} \rangle = \frac{\langle \Pi \rangle}{\langle \varepsilon_{\rm res} \rangle + \langle \Pi \rangle}$$

Is \mathcal{F} really a Physically Meaningful Measure ? hergy-Spectra of constant- ϵ CVS, constant- ϵ SCALES, constant- \mathcal{F} SCALES

Is \mathcal{F} really a Physically Meaningful Measure ? hergy-Spectra of constant- ϵ CVS, constant- ϵ SCALES, constant- \mathcal{F} SCALES

Computational Complexity – Different *G*

10¹¹ SCALES $\mathcal{G} = 0.2$ $Re_{\lambda}^{9/2}$ SCALES G = 0.25**10**¹⁰ SCALES G = 0.32SCALES $\mathcal{G} = 0.4$ SCALES $\mathcal{G} = 0.5$ 10⁹ Number of Points - DNS Re⁴ 10⁸ 10⁷ Re^4_{λ} 10⁶ 10⁵ 10⁴ 70 120 190 320 **Taylor Microscale Reynolds number** DEPARTMENT OF **MECHANICAL ENGINEERING** Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 55 Multi-Scale Modeling

ation Laboratory

Computational Complexity –

Different *G*

10¹¹ SCALES $\mathcal{G} = 0.2$ $Re_{\lambda}^{9/2}$ SCALES G = 0.25**10**¹⁰ SCALES G = 0.32SCALES $\mathcal{G} = 0.4$ SCALES $\mathcal{G} = 0.5$ 10⁹ Number of Points - DNS Re⁴ 10⁸ $D_{F_{\rm cd \; SCALES}} \lesssim 2$ Re_{λ}^{4} 10⁷ 10⁶ 10⁵ 10⁴ 70 120 190 320 **Taylor Microscale Reynolds number** DEPARTMENT OF **MECHANICAL ENGINEERING** Multi-Scale Modeling Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 55

ation Laboratory

Computational Complexity – Different *G*

Constant-Dissipation SCALES (cd-SCALES) maintains dissipation (\mathcal{F}) at a fixed level (\mathcal{G}) ,i.e., captures iso-surfaces of dissipation, which are known to be sheet-like structure,

cd-SCALES fills the space with $D_F \cong 2$.

* J. Schumacher, H. Zilken, B. Eckhardt, and K.R. Sreenivasan, Scalar dissipation fronts in high-Schmidt number mixing, Chaos 15,041105 (2005). doi

extending the wavelet-based typical multiscale problem (m unsteady 3-D flow at low Re (wavelet multi-resolution analy structures

obstacle simply modeled thro

$$\begin{split} \frac{\partial \tilde{u}_i}{\partial x_i} &= 0 \qquad \tilde{u}_i \text{ penalized perturbation velocity} \qquad u_i + U_i = 0 \text{ on } \partial \Omega_{\rm s} \\ \frac{\partial \tilde{u}_i}{\partial t} &+ \left(\tilde{u}_j + U_j\right) \frac{\partial \tilde{u}_i}{\partial x_j} = -\frac{\partial \tilde{P}}{\partial x_i} + \nu \frac{\partial^2 \tilde{u}_i}{\partial x_j \partial x_j} - \frac{\chi_{\rm s}}{\eta} \left(\tilde{u}_i + U_i\right) \\ \end{split}$$
penalty error scales with
$$\eta^{1/2} \qquad F_i(t) = \frac{\rho}{\eta} \int_{\Omega_s} (\tilde{u}_i + U_i) d\mathbf{x}$$

isolated stationary cylinder with square cross-section supercritical Reynolds-number $Re = UL/\nu = 2 \times 10^3$

computational domain: $24L \times 16L \times 4L$

penalty constant: $\eta U/L = 5 \times 10^{-4}$

thresholding level: $\epsilon = 0.05$

levels of resolution: $j_{\text{max}} = 8$

finest resolution:

 $\Delta x/L = \Delta y/L = 1/128 \qquad \qquad \Delta z/L = 1/64$

SGS/resolved dissipation about 10%

Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014 60

Adaptive LES for Wall-bounded Flows

Ongoing Efforts:

Mean = Time- and spanwise-averaged

Streamwise and transverse components

Reference: non-adaptive numerical solution (Brun et al., FTC 2008)

x = -0.3*L*

DEPARTMENT OF

MECHANICAL ENGINEERING

Multi-Scale Modeling

LABORATORY

Mean turbulent stresses

Time- and spanwise-averaged stresses

Experimental peak along the centerline captured (Lin et al., JFM 1995)

Separating shear layer becomes unstable and transition to turbulence occurs

Mean SGS energy profiles

spanwise- and time-averaged modeled SGS energy

Verified global results: $C_D = 2.4$ St = 0.13 (Okajima, JFM 1982)

y = 0

Scatter plot of the retained collocation points at highest levels

Main vortical structures identified by the Q-criterion (Q=0.25)

Spatial distribution of wavelets follows the physics

Time-dependent coupling

vortical structures

&

retained collocation points scatter plot

Time-dependent coupling

vortical structures

&

retained collocation points scatter plot

SGS energy vanishes inside of the obstacle (penalization)

$$z = -1.4, 0, 1.4$$

SGS energy field

y = -1.5, 0, 1.5

14

Variable thresholding

Variable thresholding

WLT threshold

Fraction of SGS dissipation

Variable thresholding

Resolved viscous dissipation

Modeled SGS dissipation

Re = 350, Q = 0.1

Re = 350, Q = 0.1

Re = 500, Q = 0.5

Re = 500, Q = 0.5

Adaptive levels $5 \le j \le 8$

Adaptive levels $5 \le j \le 8$

Ongoing Efforts: WDNS of Compressible Flow, Re=1000, M=0.7

Vorticity 5.000e+00 3.750e+00 2.500e+00 1.250e+00 0.000e+00

Ongoing Efforts: WDNS of Compressible Flow, Re=1000, M=0.7

Vorticity 5.000e+00 3.750e+00 2.500e+00 1.250e+00 0.000e+00

Integrated framework for modeling and simulations of fluid flows:

- highly adaptive numerical algorithm with robust physicsbased grid adaptation and active error control
- tight integration of numerics, physics based modeling, and uncertainty quantification
- *unified hierarchy* of turbulence models of different fidelity
- active control of *turbulence resolution*
- spatially/temporarily varaible fidelity simulation
- easy representation of flow geometry from auto CAD penalization/immersed boundary approach

Annual Review of Fluid Mechanics, Vol. 42, 2010 <u>http://scales.colorado.edu</u>

