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Where is aeroacoustics?
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• Accuracy of aeroacoustic calculations depends 
how accurately the velocity field is predicted.!

• Most of the flows of interest are turbulent.!
• Modeling turbulence is the essential and often 

most important part of an aeroacoustic calculation.

Where is aeroacoustics?
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Outline

• Motivation!
- New paradigm of direct physics-based coupling of 

adaptive numerical methods & turbulence models!
• Wavelets and their basic properties!
• Adaptive wavelet collocation method!
• Hierarchy of Turbulence Modeling!

- Wavelet-Based Direct Numerical Simulations (WDNS)!
- Coherent Vortex Simulation !
- Stochastic Coherent Adaptive Large Eddy Simulations!
- Low-Fidelity Approaches!

• Relationship of wavelet and other methods!
• Computational Complexity of Turbulent Flows!
• Examples!
• Conclusions and Perspectives
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At-a-Glance Comparison of   DNS, LES, RANS

Taken From – Prof. D. Veynante Lecture Note – (without permission) !
ERCOFTAC SIG4 Summer School on “Turbulence and Mixing in Compressible Flows”, Strasbourg,  France, 7-11 July 2005

Non-Wavelet-based Turbulent Modeling:  
DNS – LES – RANS
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• Use a low pass filter to separate the large scale eddies from 
the small subgrid scales.!
!
!
!
!
Simulate the evolution of the large scale vorticies, while 
modeling the effect of the small subgrid scales.!
!
!

Large Eddy Simulation
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Motivation
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!

• Does not take advantage of spatial/temporal 
intermittency of turbulent flows!

• Inhomegeneous fidelity!
- a-priori large/small scale separation !
- under-resolves energetic structures !
- over-resolves in between them

Defficiencies of Classical LES:
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Motivation
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Direct physics-based coupling of!
!

adaptive high order numerical methods !
&!

turbulence models!
!
that takes advantage of spatio-temporal intermittency 
of turbulent flows

New direction/philosophy/paradigm:
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What does direct coupling bring?

• the active control of the fidelity/accuracy of the simulation!

• near optimal spatially adaptive computational mesh !

• the “desired” flow-physics is captured by considerably smaller number of spatial 
modes !

• considerably smaller Reynolds scaling exponent, !

• robust general mathematical framework for spatial/temporal model-refinement 
(m-refinement) that can be extended to LES with AMR approach!

• new mathematical framework for epistemic uncertainty quantification!
!
!
!
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• Adaptive Wavelet Collocation Method

10
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Adaptive Wavelet Collocation Method (AWCM)

Single-mode 	

Rayleigh-Taylor Instability 
(incompressible limit)	
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Adaptive Wavelet Collocation Method (AWCM)

Single-mode 	

Rayleigh-Taylor Instability 
(incompressible limit)	
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Vorticity

Benchmark: 2D Cylinder Flow, Re=185, Ma=0.2
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Vorticity

Benchmark: 2D Cylinder Flow, Re=185, Ma=0.2
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Benchmark: 2D Moving Cylinder, Re=185, 
Ma=0.2

13

Vorticity
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Benchmark: 2D Moving Cylinder, Re=185, 
Ma=0.2

13

Vorticity
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Motivation: Compressible Viscous Flow 

14

Multiple obstacles with prescribed motion
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Motivation: Compressible Viscous Flow 

14

Multiple obstacles with prescribed motion
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Shock Wave Propagation through the Cylinder Array

15
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Shock Wave Propagation through the Cylinder Array
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Acoustic Timescale Detonation Initiation
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Acoustic Timescale Detonation Initiation
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• Hierarchical Variable Fidelity 
Multiscale Turbulence Modeling

17
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!

•optimal threshold from denoising theory†:!

•         is variance of incoherent vorticity 

Coherent Vortex Extraction*

18
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•Homogenous isotropic turbulent flow at Rλ = 732 and 
resolution N = 20483!

•subcubes of size N = 2563 are visualized

Coherent Vortex Extraction*

19

*Okamoto N,Yoshimatsu K, Schneider K, Farge M, Kaneda Y. 2007.  Phys. Fluids 19:115109	

!
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•Homogenous isotropic turbulent flow at Rλ = 732 and 
resolution N = 20483!

•subcubes of size N = 2563 are visualized

Coherent Vortex Extraction*

20

*Okamoto N,Yoshimatsu K, Schneider K, Farge M, Kaneda Y. 2007.  Phys. Fluids 19:115109	

!
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Wavelet-based Turbulence Modeling Hierarchy

21
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Wavelet-based Turbulence Modeling Hierarchy
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Wavelet-based Turbulence Modeling Hierarchy
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Wavelet-based Turbulence Modeling Hierarchy
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*Coherent Vortex SImulation (CVS): Farge M, Schneider K, Kevlahan N. Phys. Fluids 11:2187–201, 1999.	

†Stochastic Coherent Adaptive Large Eddy Simulations (SCALES): Goldstein, D.E. and Vasilyev, O.V., Phys. Fluids 16: 2497-2513, 2004.	
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Wavelet-based Turbulence Modeling Hierarchy
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Wavelet-based Turbulence Modeling Hierarchy

21
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Simulate the evolution of the most energetic coherent 
vortices (track them), while modeling the effect of the 
subgrid scales.!
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• Use wavelet thresholding filter to separate the numerically 
significant flow structures from the insignificant ones.!
!
!
!
!
Wavelet threshold is set to sufficiently small value (           ), so 
the ignored scales are insignificant and no model is 
necessary.!
!
!

Wavelet-based Direct Numerical Simulation
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• Use an “ideal” wavelet thresholding filter to separate the 
energetic coherent vortices from the “incoherent Gaussian" 
subgrid scales at each time step.!
!
!
!
Simulate the evolution of the coherent vortices, (track them), 
while modeling the effect of the “incoherent Gaussian” subgrid 
scales.!
!
!
!
!

Coherent Vortex Simulation⋆
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• Use wavelet thresholding filter to separate the most 
energetic coherent vortices from the subgrid scales.!
!
!
!
!
Simulate the evolution of the most energetic coherent 
vortices (track them), while modeling the effect of the 
subgrid scales.!
!
!

Stochastic Coherent Adaptive  
Large Eddy Simulation

24
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SCALES Dissipation

25
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SC LES Dissipation
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Turbulence Resolution

28

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs
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Turbulence Resolution

• Fidelity of the simulation is a function of Turbulence 
Resolution!

• Objective - control the level of fidelity

28

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs
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Turbulence Resolution

28

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs



Mechanical Engineering
Department of 

 & Simulation Laboratory & Simulation Laboratory
Multi-Scale ModelingMulti-Scale Modeling Variable Fidelity Adaptive Large Eddy Simulation, September 26, 2014

Turbulence Resolution

28

Kinetic Energy Based:

SGS dissipation Based: F = ⇧
"res+⇧

F = ksgs
kres+ksgs

• Homogeneous Turbulence:!

• LES with              fixed complexity   !

• LES with              fixed complexity 

FKE
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!
!
!
!
!
!
!
!
!
!
!
!
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Spatial Variable Thresholding 

Fully Adaptive Wavelet Thresholding Filter 

Scales Dependency 
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Lagrangian “Variable Thresholding” SCALES 

Spatial Variable Thresholding 
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1st order Interpolation
3rdOrder Interpolation
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Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – !
Time Varying Goal Benchmark

Interpolation Approach1st & 3rd Order
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation C⌫✏ = 0.05

C⌫✏ = 0.1 C⌫✏ = 4 C⌫✏ = 5
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Hybrid   CVS / SCALES – Threshold Animation

1st  Interpolation 3rd  Interpolation C⌫✏ = 0.05

C⌫✏ = 0.1 C⌫✏ = 4 C⌫✏ = 5
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5⌧eddy G � {0.2, 0.25, 0.3, 0.2, 0.3, 0.25}

Hybrid CVS & SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – !
Time Varying Goal Benchmark

Solving Evolution Equation Directly�F⇥ = h�i
h"resi+h�i

��1
� = |Sij

>�|

�✏ � {0.05, 0.1, 4, 5}
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Hybrid WDNS/CVS/SCALES (Hierarchical Multiscale Adaptive Variable Fidelity) – !
m-SCALES

G

SGS

AWCM R

m

G (K.E.,   (R,F))

 (R,F)

K.E.

num
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model refinement  is not limited to SCALES – !
m-LES

G

SGS

CFD R

h

m

(F (R))

F (R)
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• Computational Complexity !
• or!
• Reynolds Number Scaling 

37
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Wavelet based Direct Numerical Simulation

38

• Threshold parameter     is significantly small!✏

(a) (b)
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Computational Complexity*

39

•Studied: 3 × 101 < Re < 105!

•Number of grid points (N ) scales like Re1/2!

•∆t scales like Re-1/2

101011 101022 101044101033 101055
101033

101044

101055

101066

N

Re
  1/2

Re
101011 101022 101044101033 101055

1010-4-4

1010-3-3

1010-2-2

1010-1-1

dt

Re
  -1/2

Re

*Kevlahan NKR, Vasilyev OV. 2005. SIAM J. Sci. Comput. 26:1894–915
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Computational Complexity

40

•Computational Complexity (N /∆t) scales like Re.!
• Improvement on standard scaling estimate of Re9/4. 

(for 2D turbulence based on Kolmogorov scale)

101 102 104103 105101044

101088

10101010

10101212

101014  14  

101066

   
   

   
 

C
om

pl
ex

ity

Re
  1

Re
  3/2

Re
  9/4

Re

*Kevlahan NKR, Vasilyev OV. 2005. SIAM J. Sci. Comput. 26:1894–915
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Space–time Modes in 2D Turbulence*

41

Re =1260 Re =2530 Re =5050

Re =10100 Re =20200 Re =40400
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*Kevlahan NKR, Alam JM, Vasilyev OV. 2007.  J. Fluid Mech. 570:217–26	

!

Space–time Modes in 2D Turbulence*

42

• 2D decaying turbulence 1 260 ≤ Re ≤ 40 400.!  !
• The non-intermittent computational estimate: N ∼ Re 3/2!
• Mathematical upper bound: N ∼ Re 2

Space onlySpace–time
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• Are similar trends observed for 3-D 
turbulence?

43
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Time-Averaged Energy Spectra – !
CVS and SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�

⇠= 70, 120, 190, 320 � = 0.09, 0.035, 0.015, 0.006
2563, 5123, 10243, 20483 J

max

= 6, 7, 8, 9 � = 0.2, 0.43
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Time-Averaged Energy Spectra – !
CVS and SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�

⇠= 70, 120, 190, 320 � = 0.09, 0.035, 0.015, 0.006
2563, 5123, 10243, 20483 J

max

= 6, 7, 8, 9 � = 0.2, 0.43
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Computational Complexity – !

Spatial DOF† : 
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Computational Complexity – !
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Computational Complexity – !

70 120 190 320
105

106

107

108

109

1010

1011

Taylor Microscale Reynolds number

N
um

be
r o

f P
oi

nt
s

Re
λ
9/2

Re
λ
3

Re
λ
2.75

SCALES
CVS
DNS

= 0.2 
= 0.43 

Spatial DOF† : 

DF  3
Re3DF /(DF +1)

DFSCALES . 11
13 = 0.846153

DFSCALES < 1

DFCVS . 1
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Computational Complexity – !

Spatial DOF† : 
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Fraction SGS Dissipation – SCALES 

Linear Forcing Coefficient :

Adaptive Grid corresponds to                                                         (at highest level of resolution) 
Taylor micro-scale Reynolds number : 

Q = 6.6̄
Re�

⇠= 70, 120, 190, 320 � = 0.09, 0.035, 0.015, 0.006
2563, 5123, 10243, 20483 J

max

= 6, 7, 8, 9 � = 0.43
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Computational Complexity – 	

                                                            Different     G

�F⇥ = h�i
h"resi+h�i

10243 Re�=190 5123 Re�=120 2563 Re�=70
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Computational Complexity – 	

                                                            Different     G
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Is      really a   Physically Meaningful Measure ? 	

Energy-Spectra of  constant-   CVS, constant-   SCALES, constant-    SCALES F

F
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Is      really a   Physically Meaningful Measure ? 	

Energy-Spectra of  constant-   CVS, constant-   SCALES, constant-    SCALES F

F
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Computational Complexity – !
                                                            Different       G
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Computational Complexity – !
                                                            Different       G
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Computational Complexity – !
                                                            Different       G
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      ( Why            ? )         Iso-Dissipation Surfaces –	

Sheet-Like Structures* 	


DF = 2

!
!
* J. Schumacher, H. Zilken, B. Eckhardt, and K.R. Sreenivasan, 	

  Scalar dissipation fronts in high-Schmidt number mixing,	

  Chaos 15, 041105 (2005).   doi 	

 	

!

Scalar dissipation fronts in high-Schmidt number
mixing

Jörg Schumacher
Fachbereich Physik, Philipps-Universität Marburg, D-35032
Marburg, Germany
Herwig Zilken
Visualization Laboratory, Zentralinstitut für angewandte
Mathematik, Forschungszentrum Jülich, D-52425 Jülich,
Germany
Bruno Eckhardt
Fachbereich Physik, Philipps-Universität Marburg, D-35032
Marburg, Germany
Katepalli R. Sreenivasan
International Centre for Theoretical Physics, 34014 Trieste, Italy
!Received 27 September 2005;
published online 30 December 2005"
#DOI: 10.1063/1.2130687$

Passive scalar fields advected by turbulent flows develop
regions of very strong gradients. Such regions are of interest
because of their relation to dissipation, mixing, and chemical
reactions. The upper left panel of Fig. 1 shows a two-
dimensional cut of the instantaneous scalar dissipation rate
!proportional to the gradient squared" obtained in a direct
numerical simulation. The Schmidt number is 32, i.e., the
Batchelor scale !B of the passive scalar is about a sixth of
the Kolmogorov scale ! of the advecting fluid. The color

coding runs logarithmically from 10−5 !blue" to 102 !red" in
units of the mean scalar dissipation rate.1

Magnifications of the of the two framed regions are given
in the lower panels. They show that many structures are
much narrower than the mean scales ! and !B, which are
indicated by the colored squares. Hence much higher resolu-
tions for a proper numerical representation are required. The
grid resolution is N=1024 in all three directions and also
indicated by small grids in both panels.

In three dimensions, the high intensity regions of the sca-
lar dissipation rate are concentrated in sheets. This is evident
from the isosurfaces of the field at a level of 11 times the
mean scalar dissipation value. This is shown in the upper
right panel. Their geometric properties enter models that de-
scribe the small-scale intermittency of passive scalar turbu-
lence or the intensity of chemical reactions in nonpremixed
turbulent combustion.2

Computations were done on 256 CPUs of the IBM-
JUMP cluster at the John von Neumann-Institute for Com-
puting in Jülich !Germany". Support by Deutsche
Forschungsgemeinschaft !DFG", and the US National Sci-
ence Foundation !NSF" is gratefully acknowledged.

1J. Schumacher and K. R. Sreenivasan, Phys. Rev. Lett. 91, 174501 !2003".
2J. Schumacher, K. R. Sreenivasan, and P. K. Yeung, J. Fluid Mech. 531,
113 !2005".

CHAOS 15, 041105 !2005"

1054-1500/2005/15!4"/041105/1/$22.50 © 2005 American Institute of Physics15, 041105-1

Downloaded 20 Feb 2009 to 140.105.16.64. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

Constant-Dissipation SCALES  (cd-SCALES)

=)

maintains dissipation (   )  at a fixed level (   )F G

,i.e., captures iso-surfaces of dissipation,

which are known to be sheet-like structure*,
=)
cd-SCALES  fills the space with               . DF

⇠= 2

http://dx.doi.org/10.1063/1.2130687
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• extending the wavelet-based eddy capturing approach (De Stefano & Vasilyev, JFM 2012)!
• typical multiscale problem (mixing layer, recirculating flow, separated boundary layer, ...)!
• unsteady 3-D flow at low Re (even for 2-D bodies)!
• wavelet multi-resolution analysis naturally able to identify/track dynamically dominant flow 

structures!
• obstacle simply modeled through volume-penalization!
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FIG. 1: WDNS solution at Re = 200: Time history of the spanwise-averaged force coefficients.

perturbation velocity ũi must satisfy the same boundary conditions on ∂Ω, which are valid

for the original field ui.

Clearly, the positive constant η, which has the dimension of time and reflects the ficti-

tious porousness of the obstacle, stands for the key-parameter in the volume-penalization

approach. For vanishing η, the solution ũi of the penalized equations (4) and (5) converges

to that one ui of the original equations (1) and (2), where the global penalty error scales

with η1/2 in Ωf [15]. Thus, the no-slip boundary condition (3) can be enforced to any de-

sired accuracy by appropriately fixing η, which represents a peculiar feature of the method.

Theoretically, the time-constant η stands for an arbitrary parameter that can be chosen

independently of the numerical discretization. In practice, the use of smaller values for η

unavoidably increases the stiffness of the penalized momentum equation (5), where the ex-

plicit treatment of the penalization term would require an integration time-step of order η.

Owing to this fact, in a real computation, the constant η should be chosen as a compromise

between the need of accurately approximating the solid obstacle and that one of preserving

the numerical stability at a reasonable computational cost. Here, to by-pass this problem,

the penalty term is discretized implicitly, as already done, for instance, in [13, 14].

5

A. Volume-penalized Navier-Stokes equations

The incompressible flow around the obstacle is governed by the following continuity and

Navier-Stokes equations
∂ui

∂xi
= 0 , (1)

∂ui

∂t
+ (uj + Uj)

∂ui

∂xj
= −

∂P

∂xi
+ ν

∂2ui

∂xj∂xj
, (2)

where P = p/ρ stands for the reduced pressure, ρ being the constant density of the fluid.

The imposed uniform velocity field Uj corresponds to the freestream velocity, which is given

and known. Let the fluid occupy the complement Ωf , in the computational domain Ω, of

the physical domain filled by the solid obstacle, Ωs. The unknown perturbation velocity ui

must obey the following boundary condition on the obstacle surface

ui + Ui = 0 on ∂Ωs , (3)

which represents the no-slip condition for the total velocity field, along with appropriate

boundary conditions on ∂Ω.

According to the fictitious domain approach [12], instead of solving the original equations

(1) and (2) in the fluid domain Ωf , with the associated boundary condition (3) on the body

surface, the following penalized equations for the new unknown ũi are solved in the entire

domain Ω:
∂ũi

∂xi
= 0 , (4)

∂ũi

∂t
+ (ũj + Uj)

∂ũi

∂xj
= −

∂P̃

∂xi
+ ν

∂2ũi

∂xj∂xj
−

χs

η
(ũi + Ui) . (5)

The additional term at the right-hand-side of penalized momentum equation (5) mimics

the presence of a porous obstacle, where χs stands for the characteristic (or mask) function

associated to the obstacle domain. For a stationary body, it holds

χs(x, t) =

⎧

⎪

⎨

⎪

⎩

1, if x ∈ Ωs, ∀ t

0, otherwise,
(6)

so that, in practice, the original equations for the fluid region and the penalized equations

for the porous region are solved simultaneously. It should be noted that the penalized
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∂ũi

∂t
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∂ũi

∂xj
= −

∂P̃

∂xi
+ ν

∂2ũi
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FIG. 2: DNS solution at Re = 200: Power spectrum of the spanwise-averaged force coefficients.

acting on the obstacle can be simply evaluated as

Fi(t) =
ρ

η

∫

Ωs

(ũi + Ui)dx , (7)

viz., by integrating the total velocity field over the volume occupied by the obstacle.

In line of principle, the penalized continuity (4) and Navier-Stokes (5) equations can be

solved with any numerical technique. In this work, the efficient combination of the volume-

penalization approach with the adaptive wavelet collocation (AWC) method is exploited

[10].

B. Adaptive wavelet collocation method

In the context of AWC methodology [8], the governing equations (4) and (5) are evaluated

at collocation points, which leads to a set of nonlinear ordinary differential equations for

the collocated unknowns. The method allows the numerical grid not to be fixed once for

all, but dynamically adapted in time, following the evolution of the main flow structures,

6
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• isolated stationary cylinder with square cross-section!
• supercritical Reynolds-number!

penalty constant:

levels of resolution:  !

thresholding level:

finest resolution:  !

SGS/resolved dissipation about 10%!

computational domain:

Re = UL/⌫ = 2⇥ 103

24L⇥ 16L⇥ 4L

⌘U/L = 5⇥ 10�4

✏ = 0.05

j
max

= 8

�x/L = �y/L = 1/128 �z/L = 1/64
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Mean velocity profiles  

6161

Reference: non-adaptive numerical solution !
(Brun et al., FTC 2008)

x = -0.3L x = 0 x = 0.3L

U Streamwise and transverse components

Mean = Time- and spanwise-averaged!
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Mean turbulent stresses  

6262

Experimental peak along the centerline 
captured (Lin et al., JFM 1995)!

Time- and spanwise-averaged stresses!

x = -0.3L x = 0 x = 0.3L

y = 0

Separating shear layer becomes unstable and!
transition to turbulence occurs

20 G. De Stefano and O. V. Vasilyev
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Figure 11. Adaptive LES solution at Re = 2000: Profiles of the turbulent stresses along the
wake centerline at y = 0.

along the streamwise direction, which are x = −0.3, 0 and 0.3. The mean streamwise and
transverse velocity, say ⟨u⟩ and ⟨v⟩, are defined as the time- and spanwise-averaged corre-
sponding components of the total velocity vector (perturbation velocity plus freestream
velocity). By looking at the left part of Fig. 10, where the mean velocity profiles are
drawn, it appears that the agreement with reference data is very good for each location.
Some slight differences exist for the RMS velocity profiles, which are reported on the
right part of the same figure. However, the comparison seems fully satisfactory, even
considering the different numerical settings like, for instance, the different blockage ratio,
which affects the transition to turbulence in the separated shear layer.

The adaptive LES solution is further illustrated by examining the profiles along the
wake centerline (y = 0) of the mean turbulent stresses

〈

u′2
〉

, ⟨u′v′⟩ and
〈

v′2
〉

, where u′

and v′ are the fluctuations around the corresponding means, reported in Fig. 11. The
present method is able to predict the peak in the streamwise turbulent stress

〈

u′2
〉

that
exists in the near wake of the cylinder, e.g. Lyn et al. (1995).

The contour maps of the SGS energy field are reported in Fig. 12 for the range
0 < ksgs < 0.01, at a given time instant. Three different sets of slices are drawn, which
correspond to the planes z = −1.4, 0 and 1.4 (on the top), y = −1.5, 0 and 1.5 (at the
middle), and x = 2, 4, 6 and 8 (at the bottom). The level of SGS energy is relatively
high in the near wake of the cylinder, while it vanishes inside of the volume occupied by
the obstacle, owing to the penalization. This is also evident in Fig. 13, where the profiles
of the mean SGS energy, say ⟨ksgs⟩, are represented along the wake centerline at y = 0
(top) and on the side of the cylinder at x = −0.3, 0 and 0.3 (bottom).

Finally, as to aerodynamic force arising form fluid-structure interaction, the time-
averaged drag-coefficient is CD = 2.2 and the corresponding dominant wake frequency,
calculated from the fluctuating lift force, results in the Strouhal-number St = 0.13.
These results are in agreement with both experiments and numerical solutions at the
same Reynolds number (Okajima 1982; Brun et al. 2008).
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Mean SGS energy profiles  

y = 0

spanwise- and time-averaged modeled SGS energy

Verified global results: CD = 2.4 St = 0.13 (Okajima, JFM 1982)

22 G. De Stefano and O. V. Vasilyev
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Figure 13. Adaptive LES solution at Re = 2000: Profiles of the mean SGS energy ⟨ksgs⟩ along
the wake centerline at y = 0 (top) and on the side of the cylinder at x = −0.3, 0 and 0.3
(bottom).

5. CONCLUDING REMARKS

The hybrid volume-penalization/wavelet-collocation method for the simulation of un-
steady three-dimensional incompressible flow around a square cylinder at zero incidence
is studied. The computations have been conducted for both transitional flow, where the
wake develops complex three-dimensional vortical structures, and turbulent flow, with-
out and with the aid of a residual stress model, respectively. The present results are in
general agreement with non-adaptive numerical solutions and experiments.

The advantages of combining these two numerical techniques in simulating the fluid-
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Instantaneous vorticity field
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Scatter plot of the retained 
collocation points at highest 
levelsMain vortical structures !

identified by the Q-criterion !
(Q=0.25) 

Spatial distribution of wavelets follows the physics	
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Figure 8. Adaptive LES solution at Re = 2000: Spanwise vorticity contours (−4 < ωz < 4)
(left) and computational mesh (right) in the planes z = −1.2, 0 and 1.2, at a given time-instant.
Close-up view in the domain: −2 < x < 8, −3 < y < 3.

Figure 9. Adaptive LES solution at Re = 2000: Main vortical structures in the near wake
identified by the iso-surfaces of Q = 0.25 (left), and scatter plot of the wavelet collocation
points at higher levels of resolution (5 ≤ j ≤ 8) (right), at a given time instant. Close-up view
in the domain: −2 < x < 8, −3 < y < 3.
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Figure 8. Adaptive LES solution at Re = 2000: Spanwise vorticity contours (−4 < ωz < 4)
(left) and computational mesh (right) in the planes z = −1.2, 0 and 1.2, at a given time-instant.
Close-up view in the domain: −2 < x < 8, −3 < y < 3.

Figure 9. Adaptive LES solution at Re = 2000: Main vortical structures in the near wake
identified by the iso-surfaces of Q = 0.25 (left), and scatter plot of the wavelet collocation
points at higher levels of resolution (5 ≤ j ≤ 8) (right), at a given time instant. Close-up view
in the domain: −2 < x < 8, −3 < y < 3.
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SGS energy field
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z = �1.4, 0, 1.4

SGS energy vanishes inside 
of the obstacle (penalization)

Adaptive simulations of unsteady flow past a square cylinder 21
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Figure 12. Adaptive LES solution at Re = 2000: Instantaneous SGS energy contours
(0 < ksgs < 0.01) in the planes z = −1.4, 0 and 1.4 (top), y = −1.5, 0, and 1.5 (middle),
x = 2, 4, 6 and 8 (bottom).
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SGS energy field
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y = �1.5, 0, 1.5

Adaptive simulations of unsteady flow past a square cylinder 21
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x = 2, 4, 6 and 8 (bottom).
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WLT threshold 
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Variable thresholding
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Fraction of SGS dissipation WLT threshold 
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Variable thresholding
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Resolved viscous dissipation Modeled SGS dissipation 
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Re = 350, Q = 0.1
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Re = 350, Q = 0.1
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Re = 500, Q = 0.5

Ongoing Efforts:!
WDNS of Compressible  Flow
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Re = 500, Q = 0.5

Ongoing Efforts:!
WDNS of Compressible  Flow
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Adaptive levels 5 ≤ j ≤ 8

Ongoing Efforts:!
WDNS of Compressible  Flow
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Adaptive levels 5 ≤ j ≤ 8

Ongoing Efforts:!
WDNS of Compressible  Flow
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Ongoing Efforts:!
WDNS of Compressible Flow, Re=1000, M=0.7
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Ongoing Efforts:!
WDNS of Compressible Flow, Re=1000, M=0.7
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Conclusions and Perspectives
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• Integrated framework for modeling and simulations of fluid flows:!

- highly adaptive numerical algorithm with robust physics-
based grid adaptation and active error control!

- tight integration of numerics, physics based modeling, and 
uncertainty quantification!

- unified hierarchy of turbulence models of different fidelity!
- active control of turbulence resolution !
- spatially/temporarily varaible fidelity simulation!
- easy representation of flow geometry from auto CAD - 

penalization/immersed boundary approach 

Annual Review of Fluid Mechanics, Vol. 42, 2010
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