

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA

A FILTERED KINETIC ENERGY PRESERVING METHODOLOGY FOR LARGE EDDY SIMULATIONS OF COMPRESSIBLE FLOWS ON UNSTRUCTURED MESHES.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

A. Báez-Vidal ¹, J.B. Pedro ¹, O. Lehmkuhl ², <u>F.X. Trias</u>¹ and C.D. Pérez-Segarra ¹

COMPUTATIONAL EXPERIMENT ON AEROACUSTICS

September 24-27th, 2014. Svetlogorsk, Russia.

¹Heat and Mass Transfer Technological Center (CTTC), Colom 11 TR4 Building, 08222 Terrassa (Barcelona) Spain.

² Termofluids S.L., Av. Jacquard 97-E, 08222 Terrassa, Barcelona, Spain

Contents

Objectives, motivation and justification. Introduction

Compressible Navier-Stokes Equations

Numerical Models

Finite Volumes KEP Schemes Filtering Methodology

Numerical Study (Experiments)

Benchmark test Sajben's transonic diffuser Problem definition Results

Conclusions & Further Work Acknowledgments

Objectives, motivation and justification

Objectives

- To solve turbulent high-speed flows, in the presence of discontinuities, by means of Large Eddy Simulations (LES) on unstructured meshes.
- To achieve stability and convergence of kinetic energy preserving (KEP) methods by means of filtering (FKEP) in coarse meshes.

Motivation

- Shock-vortex and boundary layer shock interaction (SBLI) are important issues in the numerical simulation of compressible flows for transonic and supersonic applications.
- Complicated geometries, such as wind turbine blades or complete aircrafts, may require unstructured meshes.

Objectives, motivation and justification

Figure: NACA0012 at $AoA = 5^{\circ}$ and $Re = 5 \times 10^4$.

- Previous works on NACA0012 [1] concluded that KEP methods are the best for turbulent subsonic compressible flows.
- KEP schemes diverge in discontinuous flows, wiggles appear with coarse meshes.
- ► To achieve stability, the solution is filtered at each time step.

[1]A. Baez Vidal, J.B. Pedro, O. Lehmkuhl, ECFD IV, 2014

Introduction

Compressible Navier-Stokes Equations

Three-dimensional Navier-Stokes equations are, in compact form,

$$rac{\partial \phi}{\partial t} +
abla \cdot f_{\textit{inv}}(\phi) =
abla \cdot f_{\textit{visc}}(\phi)$$

with

$$\phi = \begin{pmatrix} \rho \\ \rho \mathbf{u} \\ E \end{pmatrix} \quad f_{inv}(\phi) = \begin{pmatrix} \rho \mathbf{u} \\ \rho \mathbf{u} + p \\ (E+p)\mathbf{u} \end{pmatrix} \quad f_{visc}(\phi) = \begin{pmatrix} 0 \\ \tau \\ \tau \mathbf{u} - \mathbf{q} \end{pmatrix}$$

For ideal polytropic gas,

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho \mathbf{u} \cdot \mathbf{u}$$
 $p = \rho RT$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction

Compressible Navier-Stokes Equations

Viscous and heat transfer terms are,

$$\tau_{ij} = \mu \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right] \qquad q = -\kappa \nabla T$$

The viscosity is given by Sutherland's law,

$$\mu = 1.461 \cdot 10^{-6} \frac{T^{3/2}}{T + 110.3}$$

And the conductivity is,

$$\kappa = \frac{\mu c_p}{Pr}$$

For air, $\gamma = 1.4$ and $R = 287 k J K g^{-1} K^{-1}$ and Pr = 0.71.

Finite volume method

The compressible Navier-Stokes equations are solved using finite volume (FVM) on a collocated unstructured mesh.

$$\frac{\partial \phi_o}{\partial t} + \frac{R_o}{V_o} = 0$$
$$\sum_{o p} F_{o p} A_{o p} = R_o$$

Where V_o is the cell volume, F_{op} is the total face normal flux, and A_{op} the face area.

$$F_{op} = F(\phi_o, \phi_p) \quad F(\phi_o, \phi_o) = f(\phi_o)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LES require the use of KEP numerical schemes.

KEP Schemes

The inviscid part of the low order numerical fluxes $F_{op}^{inv}(\phi_o, \phi_p)$, with $\overline{\psi_{op}} = \frac{\psi_o + \psi_p}{2}$ and $\tilde{\psi_{op}} = \sqrt{\psi_o}\sqrt{\psi_p}$.

Jameson [1]Jameson* [1]Rozema[3]

$$\overline{\rho}\overline{\mathbf{u}}\cdot\mathbf{n}$$
 $\overline{\rho}\overline{\mathbf{u}}\cdot\mathbf{n}$ $\widetilde{\rho}\overline{\mathbf{u}}\cdot\mathbf{n}$ $\overline{\rho}\overline{\mathbf{u}}\overline{\mathbf{u}}\cdot\mathbf{n}+\overline{\rho}\mathbf{n}$ $\overline{\rho}\overline{\mathbf{u}}\overline{\mathbf{u}}\cdot\mathbf{n}+\overline{\rho}\mathbf{n}$ $\widetilde{\rho}\overline{\mathbf{u}}\overline{\mathbf{u}}\cdot\mathbf{n}+\overline{\rho}\mathbf{n}$ $(\overline{E}+\overline{\rho})\overline{\mathbf{u}}\cdot\mathbf{n}$ $(\overline{E}+\overline{\rho})\overline{\mathbf{u}}\cdot\mathbf{n}$ $(\overline{E}+\overline{\rho})\overline{\mathbf{u}}\cdot\mathbf{n}$

We use the recently developed Rozema scheme as it bounds kinetic energy, momentum, ...

[1] J. Sci. Comput. (2008) 34:188208

[2] J. Turbul. (2014) 15:386-410

Filtering Methodology I, Basic Concept

Applying explicit *s* steps Runge Kutta time integration scheme on the semidiscrete NS equations, we write, for each time step,

$$\phi^{i} = \sum_{j=0}^{j < i} \left(\beta_{ij} \phi^{j} + \Delta t \alpha_{ij} \mathbf{R}^{j} \right)$$
$$\mathbf{R}^{j} = \mathbf{R}(\phi^{j}) \qquad \phi^{0} = \phi^{n} \qquad \phi^{s} = \phi^{n+1}$$

- ► KEP schemes produce wiggles, the computed solution φⁱ contains a δ_i numerical perturbation after each integration step φⁱ = φ_i + δ_i
- The perturbation lies in the smallest scales of the mesh.
- We propose to apply a selective filter.

$$\mathcal{F}(\hat{\phi}^i) = \tilde{\phi}^i \simeq \phi_i$$

Filtering Methodology II, Algorithm

The filter is activated near numerical instabilities that should be identified by an instability detector $\Psi(\phi)$. Hence $\mathcal{F} = \mathcal{F}(\Psi(\phi))$

Filtered KEP algorithm

- 1. For $1 \le i \le s$ steps of the time integration scheme,
 - 1.1 compute \mathbf{R}^{i-1}
 - 1.2 Compute a RK step , obtaining $\hat{\phi}^i$
 - 1.3 Detect instabilities $\Psi(\hat{\phi}^i)$ and compute the filter $\mathcal{F}(\Psi(\hat{\phi}^i))$

1.4 Filter solution
$$\phi^i \simeq \tilde{\phi}^i = \mathcal{F}(\hat{\phi}^i)$$

2.
$$\phi^{n+1} = \phi^s$$

The method strongly depends on the quality of Ψ and the properties of *F*

Filtering Methodology III, Detector and Filter

Detector Properties

- Aim to distinguish between physical solutions and numerical instabilities (hard to do).
- ► Based on a maxima/minima measuring operator ∑_{op} |φ_p - φ_o|.

Filter Properties

- Conservative $||\mathcal{F}(\phi)|| = ||\phi||$.
- Linear and explicit.
- Constants lie in filter kernel $\mathcal{F}(\mathbf{1}) = \mathbf{1}$.
- ► Local Extrema Diminishing $\sum_{\substack{o | p \ e \ p}} |\phi_p - \phi_o| - |\tilde{\phi}_p - \tilde{\phi}_o| \ge 0 \quad \forall o.$

 Maxima or Minima don't change signs.

Numerical Study

Benchmark test

Figure: Up: Mesh. Down:Pressure field (colors) and pressure based instability detector value (greyscale).

The capability of the method of capturing discontinuities is tested with the one-dimensional Sod's shock-tube.

- 12000 Tetrahedrons 3D Mesh
- Comparison of a Ducros and a pressure maxima-based instability detectors.

Numerical Study

Benchmark test

Figure: Density and pressure profiles for the Shock-tube.

イロト 不得 トイヨト イヨト

-

- Slight differences between detectors.
- KEP diverged for this case.
- Slightly less dissipation than upwind.
- Wiggles are not totally eliminated.

Numerical Study

Sajben's transonic diffuser

Figure 1: Schematic of Sajben Diffuser Test Case.

Figure: Sajben Transonic Diffuser problem definition.

- Transonic compressible case with experimental³ and numerical⁴ solution for comparison.
- Two cases: weak (steady shock wave, pressure-gradient-induced separation) and strong (transient shock wave and shocklets, shock-induced separation).
- Challenging case: discontinuous transonic turbulent flow, strong SBLI.

³Bogar AIAA vol. 21 no. 9

 $^{^{4}}$ http://www.grc.nasa.gov/WWW/wind/valid/transdif/transdif_html \gg =

Numerical Study Results

Figure: FKEP of Sajben's transonic diffuser strong case, instantaneous Mach number and instability detector.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

As vortices reached outlet boundary condition, calculations diverged. No statistical results available.

Conclusions & Future Work

Conclusions

- ► The Filtered KEP can stabilize KEP schemes in transonic flow.
- KFEP fits well with unstructured meshes.
- Heavy filtering with unstructured meshes can cause instability.
 With Light filtering, perturbations are not totally eliminated.

Further work

 Achieve the validation of the method by resolving the Sajben transonic diffuser.

Acknowledgments

This work has been partially granted by the Spanish Secretaría de Estado de Investigación, Desarrollo y Competitividad of the Ministerio de Economía y Competitividad BES-2010-032414 grant for the ENE2009-07689 project.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA

A FILTERED KINETIC ENERGY PRESERVING METHODOLOGY FOR LARGE EDDY SIMULATIONS OF COMPRESSIBLE FLOWS ON UNSTRUCTURED MESHES.

Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa

A. Báez-Vidal ¹, J.B. Pedro ¹, O. Lehmkuhl ², <u>F.X. Trias</u>¹ and C.D. Pérez-Segarra ¹

COMPUTATIONAL EXPERIMENT ON AEROACUSTICS

September 24-27th, 2014. Svetlogorsk, Russia.

¹Heat and Mass Transfer Technological Center (CTTC), Colom 11 TR4 Building, 08222 Terrassa (Barcelona) Spain.

² Termofluids S.L., Av. Jacquard 97-E, 08222 Terrassa, Barcelona, Spain