GENERATION OF FLUCTUATIONS BY TRANSONIC FLOW OVER SHALLOW CAVITY

Zinovyev V.N., Lebiga V.A., Mironov D.S., Pak A.Yu.

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS Novosibirsk

Shallow cavity

L/D > 1

L/W > 1 (3D)

D

W

L/W < 1 (2D)

Types of flow

Shallow cavity fluctuations

Rossiter formula

$$\frac{fL}{U} = N_{Fm} = \frac{(m-\alpha)}{\frac{1}{k} + M}$$

m = 1, 2, 3... – mode number α , k – empirical constants

> α = 0.25, k = 0.57 Rossiter, 1964

D.R. Williams, C.W. Rowley, 2006.

Resonance criterion

Laminar boundary layer $80 < L/\theta < 155$ (Gharib, Roshko, 1987) $L/\theta < 100$ and $(L/\delta)(\text{Re}_{\delta})^{1/2} > 290$ (Sarohia, 1977)

Turbulent boundary layerδ / L < 0,066</td>(Ahuja, Mendoza, 1995)

Mode switching

L.N. Cattafesta III, M.S. Kegerise, G.S. Jones, Experiments on Compressible Flow-Induced Cavity Oscillations, 29-th AIAA Fluid Dynamics Conferense, June 15-1 8, 1998

Experimental setup (1)

T-325M

- Test section: 40x40mm
- M: 0.4 4
- Re: 7.8·10⁵ до 3·10⁸ m⁻¹

Transonic Wind Tunnel ASTRC/NCKU

- Test section: 600x600mm
- M: 0.2 1.4
- max Re: 2.10⁷ m⁻¹

Experimental setup (2)

Cavity model • L = 60 mm • D = 9 mm • W = 30 mm

L/D = 6.67; L/W = 2 Open, 3D

Side wall of T-325M

Experimental setup (3)

Experimental setup (4)

Flow

- Hot-wire
- Length 2 µm
- •Diameter 10 µm
- •Resistance ~ 2 Ω
- Position •x/L = 0.68 •y/D = 2

Constant current anemometer CCA-6
Maximum resistance – 20 Ω
Maximum current – 300 мА

Flow conditions

M: 0.4 - 0.75 Re: 13.10⁶ ÷ 26.10⁶ m⁻¹

δ / L < 0,066 for T-325M

Fourier spectra inside the cavity (film sensor) (2) M = 0.65, Re = 19M, x/L = 1 10⁶ 45 3 105 10 7. Re = 19M. x/L = 1 10 10 10 345 2 10 10 M = 0,7: Re = 19M, x/L = 1 10⁶ 10 10² 10³ 10 345 f. Hz 10⁵ Film sensor on rear wall 10 x/L = 110 10^{2} 10^{3} 10^{4} 10^{5} 10 f, Гц

 $f_3 = 3384 \text{ Hz}, f_5 = 6335 \text{ Hz}$

 $f_3 = 3644 \text{ Hz}, f_5 = 6696 \text{ Hz}$

 $f_2 = 2802 \text{ Hz}, f_4 = 5884 \text{ Hz}$

Oil-black visualization, T-325M (1)

M=0.6, Re = $19 \cdot 10^{6}$ m⁻¹

M=0.7, Re = $19 \cdot 10^6$ m⁻¹

No resonance

Resonance

Oil-black visualization, T-325M(2)

M = 0.4, Re = 19M

M = 0.5, Re = 19M

M = 0.6, Re = 19M

Oil black visualization, TWT M=0.5, Re = $17 \cdot 10^{6}$ m⁻¹

111111

Amplitude variation

FFT of wavelet amplitude of resonant mode $f_2 = 2,8$ kHz, M = 0.75

Hilbert-Huang spectra

M = 0,75, Re = 26M, x/L = 1

Amplitude variation of second Rossiter mode at M = 0,75

Flow control

Without rib With rib

Conlusion

- Rossiter fluctuations are not always observed in the flow even resonance criterion is satisfied
- Higher order modes are observed in outer flow
- Number of dominant Rossiter mode decreases if Mach number increases
- Rear separation line on cavity floor moves downstream when resonance appears
- HHT traces faster amplitude variation compared to wavelet transform
- Presence of a rib on cavity floor decreases amplitude of resonant mode but increases overall background noise