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TOPICS 

1. The difference between (i) strong nonlinearity and (ii) 

strongly expressed weak nonlinearity is discussed. Both 

are responsible for waveform distortion, shocks formation, 

and corresponding broadening of frequency spectra.  

2. Classical nonlinear phenomena significant from the 

viewpoint of aeroacoustics are reviewed. Among them are 

transformations of different noise spectra, and noise 

control by high-intensity signal. After review, following 

problems will be discussed: 

3. Sonic booms in turbulent atmosphere.  

4. New mathematical models including nonlinear integro-

differential equations (IDE). IDE describe regular and noise 

waves in atmosphere where the spectrum of relaxation 

times of different gases should be considered for correct 

description of shock waves  

5. Standing waves in gas-filled resonators 

6. Nonlinear sound absorbers 



Name of this workshop is “Computational Experiment in Aero- 

acoustics”. Evidently, key word here is “Computational” 

The title of our talk is “Nonlinear Wave Phenomena in Gases and 

Liquids”. Key words here are “Nonlinear Phenomena”  

Somebody may think, that this talk is out of line with this meeting. 

But such viewpoint is incorrect. This can be easily proved.  

Really, you can read CEAA from left to right: 

C E A A 

Computational 

Experiment 

in 

Aero 

Acoustics 

But you can 

also read this 

abbreviation 

in opposite 

directioin -

from right to 

left: 

Analytical 
Acoustics 

Excepting 
Computers 

Such interpretation shows that this talk completely corresponds 

to main topic of this remarkable event 



Their first meeting  took place on 

20 March 1974, in the office of 

Khokhlov, who was that time the 

Rector of Moscow University. 

Khokhlov, Bakhvalov, Rudenko, 

and Zhileikin participated in that 

meeting. 

During 1974-1993: codes for БЭСМ-6 and IBM PС/AT-286 were developed , 50 

papers were published. Application packages were created: “NACSI” (1990) 

(Nonlinear Acoustics – Computer Simulation), and “SB”(Sonic Boom). (1993).  

1. Noviklov, Rudenko, Timoshenko “Nonlinear Underwater Acoustics”. 

Sudostroenie, 1981; NY, Amer.Inst.of Physics, 1987. 

2. Bakhvalov, Zhileikin, Zabolotskaya “Nonlinear sound beams”. Nauka, 1982.   

3. Vasil’eva, Karabutov, Lapshin, Rudenko “Interaction of 1D waves in 

diapersionless media” MSU Press, 1983.  

However, numerical studies of nonlinear phenomena really 

go on more than 40 years 

BAKHVALOV 

KHOKHLOV 

Back of 

Barenblatt 

“Computer” collaboration between mathematicians and 

physicists was initiated by academicians N.S.Bakhvalov and 

R.V.Khokhlov. 



There were performed first numerical studies of nonlinear 

waves in acoustics. Now computer studies predominate 

everywhere because of 2 reasons: 

1. All simple problems are already solved, and only few 

experts can solve analytically some new complicated 

problems.  

2. Nonlinear acoustics was a field of fundamental research 

(during about 1950-1980). Now it belongs rather to applied 

science and even to engineering.  

Main applications are connected with medical ultrasound, underwater 

acoustics, Earth sciencies, industrial NDT and aeroacoustics. 

However, for better understanding of new nonlinear 

phenomena it is desirable, at least at the first stage, to use 

analytical approaches. I will try to give a brief review of 

some phenomena which may be interesting or seem to be 

promising for applications. 



1. Aeroacoustics deals with both Strongly Nonlinear Waves 

(SNW) and Weakly Nonlinear Waves (WNW) 

WNW can demonstrate, however, strong distortion of their 

shape and spectrum. What is the difference between 

these two types of wave?  

Up to now, mainly WNW have been studied by Nonlinear Wave Theory.  

Typical strongly expressed effects of weak nonlinearity are: 

t t t t 

X=0 

t t t 

X=0 

X 

 

When a shock front appears at a distance of                    wavelengths, 

nonlinearity is weak but strongly expressed. Acoustic pressure here is                      

much less than 1 atm.  In water WNW has amplitude less than 23000 atm     

     

transformation of 

smooth single pulse to 

a triangular profile with 

a leading shock front;  

transformation initially 

harmonic wave to 

sawtooth wave with one 

shock per period. 
32 1010 



The question: if the wave is said to be weak or strong - it is in 

comparison with what ?  

If the wave is compared with a 

typical magnitude of the same field 

inside the medium and these 

magnitudes are close one to 

another, one can point to a SNW.  

If the wave (spectrum, shape) is 

compared with itself at initial 

moment of time, and strong 

changes are observed, one can 

point to a WNW.  

WNW 

Ac.Pressure 

WNW 
Amplitude 

Elastic 

Module 

SNW 

Pa109 1010 

For liquids 

For air 

Pa510



In the study of WNW, the equation of state (or determining equation) can 

be expanded in a power or functional series. First example is the 

expansion of the adiabatic equation of state in powers of density and 

pressure  disturbances in the vicinity of equilibrium state             : 
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More general is the the Volterra-Frechet functional series expansion: 

However, such expansions cannot be used in 3 cases.  

(i) if the “equation of state” contains a singularity  

(ii) Secondly, if series are divergent for strong fields  

(iii)Thirdly, if the linear term is absent and nonlinearity dominate 

Examples of 3 types of strongly nonlinear vibration systems 
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The 1st is the Burgers-type equation, 2nd is the Earnshow 

equation, and 3rd is generalized Heisenberg equation. All three 

models have exact solutions with important physical meaning.  

Sonic boom wave near supersonic aircraft and high-power 

noise at launching of big missiles are examples of SNW 

Examples of 3 types of strongly nonlinear waves 
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Exactly solvable model: quadratically-cubic Burgers Eq. 

with the singularity 

Linearity substitution: 

One of Stationary waves – stable shock 

of compression 

 )(zSH   12 

As distinct from usual “saw-tooth” wave in 

quadratic medium, here the have trapezoidal 

form, instead of triangular. Each period 

contains 2 shocks: compression and 

rarefaction. The last type does not exist in 

quadratic media.  
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SNW of the 3rd  type: there is no linear term  

Consider a chain of masses. Each moves along a parallel bar placed at the same 

distance  from one another. If in equilibrium state all springs are not tensed, the 

linear regime does not exist.  
The equation of motion 

of a mass      3
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If all masses except n=m are fixed, chain 

reduces to a single ordinary equation:  
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Normalized form: 

taxX 0,/  

Heisenberg W. Zur Quantisierung nicht-

linearer Gleichungen. Nachr. Acad. Wiss. 

Goettingen. 1953. V. IIa. No.8. P.111-127 

Solution expressed through Jacobi 

elliptic functions is:  5.00tAsdAX 
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Fourier series expansion contains olny odd harmonics 

The period decreases with increase in amplitude.  

Higher harmonics are weak ! 



In the continuum model the differential-difference eq. 

reduces to a nonlinear partial differential equation:  
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Interestingly, this equation has a solution describing 

standing waves, but the traveling waves appear only for 

springs which are tensed in equilibrium. The 

propagation velocity increases with increase in tension.  
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Continual 

generalization of 

W.Heisenberg Eq. 

If springs of mechanical chain are slightly stretched and have softening 

nonlinear characteristics, the equation is: 
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Consequently, self-trapping comes at amplitudes /6 22
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Moreover, this “self-stopped” wave traps all other weak waves propagating 

trough this spatial region 



Accretion on a Singularity of strongly nonlinear wave 
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This process is similar to the 

accretion on the black hole. 

Singularities behave like particles. 

They are stable and can interact 

with each other 
Analogous solution has 

KdV and other well-known 

models:  20
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Singular solutions have well-known Eqs of the theory of nonlinear waves. 

Example: usual Burgers Eq. 

Let it be valid for SNW 



2. Classical phenomena of Statistical Nonlinear Acoustics 

(a) Intensities of 2-nd и 3-rd harmonics of narrow-band noise (solid curves) and tone signal 

of equal intensity (dashed curves). (b) – is the experiment. Interactions of wide-band noise 

with tone signal (c). Spectral fragment up to higher harmonics (d) 

In Figs. с, d Great number of harmonics appear. Wide-band noise spectrum is 

reproduced at the left and right of each line, therefore“white noise” grows rapidly.  
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Zabolotskaya Eq. 



Nonlinear transformation of high-intensity noise 

Experiment 

Theory 

Steady-state 

spectra of 

diffracting sound 

beam in the far 

field. Nonlinear 

effects increase 

with number of 

curve 

Initial 
Section of spatio- 

temporal 

correlation 

function. Mixing of 

spectra leads to 

amplification of 

spatial and 

temporal 

correlation 



The decay of broadband noise  

The multiple merging of discontinuities leads to a loss of 

information on the fine structure of the initial signal, and, at long 

distances, a self-similar spectrum is formed, whose evolution in 

time is determined by a single time scale )(z . 

In the high-frequency and low-frequency regions, the spectrum 

has universal asymptotics 2/32~),(  zzE   and 2/12~),( zzE   

respectively. 

 

Decay of 

broadband 

noise 



It is possible to observe also the initial noise damping (dotted line in 

Fig.а) and additional nonlinear absorption of signal  

Experiments: suppression of low-frequency noise by high-frequency signal 

(a) and decay of tone signal in noise field (b)  

Initial noise 

and signal 

Suppressed 

area 

Probability for nonlinear quasi-harmonic noise. 

Curve 1 - initial Gaussian distribution.. 

Nonlinear absorption of shocks increases 

probability of small pressures and decreases 

probability of large outbursts (2 ,3).  

Noise spectrum of “Atlas-D”. In high-frequency 

region nonlinear (solid) curves are above linear 

(dashed) curves. 
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General approach to the nonlinear evolution 

of noise spectra 
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1. If initial spectrum   of stationary noise is known, we can 

calculate the auxiliary correlation function 

 0S
 TzRA ,

2. Now it is necessary to perform nonlinear integral transformation to 

calculate the correlation function of acoustic pressure at arbitrary 

distance traversed by the wave in nonlinear medium: 

3. Performing Fourier transformation in accordance with Wiener-

Khinchin theorem, we calculate spectrum for arbitrary distance:  ,zS

4. Integral intensity of noise equals to:  0,)(2 zRz 



3. Sonic booms in turbulent atmosphere 

3000 Pa 

500  Pa 

300 Pa 

Pressure near the 

ground is 200 Pa 

De-focusing 

ray tube 

Focusing ray 

tube 

Turbulent 

boundary layer 

of the 

atmosphere 

Soniv Boom generation 
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This kernel of IDE corresponds to relaxation of 

oxygen (n=1), nitrogen (n=2), carbon oxide (n=3) 

Relaxation of atmospheric gases must be 

taken into account 

SNW 

SNW 

WNW 



Probability distribution of peak 

pressure in the SB pulse 

Probability 

distribution of 

peak pressure 

before the 

turbulent layer 

Probability of high strength fluctuation 

p

Experimental data on SB peak 

pressure measured at the ground y

x

ground 



However, main harmful impact on humans and technical 

equipment produces not high acoustic pressure, but rather 

high pressure gradient. It depends on the steepness of shock 

fronts. In turn, the shock width depends on molecular 

relaxation of atmospheric gases. Wave propagation in such 

media is governed by nonlinear IDE: 
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The form of kernel can be 

calculated on the base of models 

of molecular kinetics. The kernel 

also can be reconstructed using 

measured frequency 

dependencies of sound velocity 

and absorption.  

Profiles of shock waves 

calculated for exponential kernel 



Expert System for selection of optimum regime and route 

of SPA flight 

consideration must be given to: 

1. SPA: aerodynamics, speed, 

manoeuvring, route 

2. Atmosphere: stratification, regular 

inhomogeneity, turbulence, 

humidity, wind, molecular 

composition 

3. Wave: nonlinearity, diffraction, 

refraction, scattering, absorption, 

molecular relaxation 

4. Nature of the ground: relief, acoustical 

properties of boundaries,  response 

to pulse signal, penetration to the 

ocean and to the ground through the 

rough surface 

5. Impact on: living beings (humans, 

marine and terrestrial animals), 

buildings and equipment 



Penetration depth of 1 MHz - ultrasound in different 

biological tissues (intensity decreases «е» times)

Lungs

Scull bones

Skin

Muscle,along 

fibers

Brain

Blood

Blood plasma

Water 35 m

140 cm

40 cm

9 cm

6 cm

2.5 cm

0.7 cm

0.2 cm Frequency dependence of

absorption is           , where 

index n varies from 2.1 (for 

skull bones), and 1.7 (testicle), 

to 1.1 (muscle of skeleton) and 

0.6 (skin)

nf~

Power index n is a fractional number. Therefore waves in tissues cannot 

be described by differential equations. The adequate model for waves in 

tissues is IDE, where kernel K(s) is different for different media. 



Absorption 

rate of wave 

energy is 

required for 

US therapy. 

Examples are  

hyperthermia, 

ablation, etc. 



For confluent kernels known Burgers, KdV, Rudenko-Robsman, Khokhlov-

Zabolotskaya and Kadomtsev-Petviashvili models may be derived from IDE. 

K is the kernel describing 

non equilibrium internal 

dynamics of given medium 



Interesting that studies of IDE with 

particular “fractional” kernels were most 

cited (in 2013) among all mathematical 

works. Statistical analysis was performed 

by “Thomson Reuters”. 



Frequency response of 

cubically nonlinear 

resonator 

5. Standing waves in gas-filled resonators 

Frequency response of 

quadratically nonlinear 

resonator determined as 

dependence of energy on 

frequency 

Frequency response 

determined as 

dependence of 

positive peak 

pressure on 

frequency 

Nonlinear Q-factor decreases with 

increase in pump amplitude 
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6. Nonlinear Helmholtz resonator for high-intensity sound absorber 

Absorption  1  

coefficient 

Frequency 

Nonlinear 

Linear 

Nonlinearity can detune the resonance, if linear regime 

is tuned. In opposite, nonlinearity can amplify 

absorption due to acoustic impedance matching  

It is possible to control 

the absorptance and 

frequency band of 

resonator electronically 

or mechanically 



Rudenko and Gurbatov demonstrate to the Governor Shantsev their new 

medical devices during the exibition of innovations 

 

One can meet nonlinear phenomena in many areas of 

natural sciences and engineering 
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