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Southampton aviation 

• Eric Moon first flew from Southampton Airport site in 1910 

• First transatlantic commercial service from Southampton to 
New York in 1939 – Pan Am Yankee Clipper 
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• Southampton Airport – 100 years continuous 
operation 

• Seaplanes – Development & early centre  

• Spitfire – Developed & manufactured 

• Manpowered Flight – first successful  

• Aircraft Noise Reduction 

• Flight Simulation 

• Sensor Systems 

• Aerospace Systems Integration 

• Space – Situational Awareness 

• Fibre Lasers 

Aerospace Southampton 



• Global Students and Graduates 

– 22,000 students 

• 3,000 international 
• 100+ countries 
 

– 5,000 graduates each year 

– 250 degree programs 

– Over 75 different subjects 

– 150,000+ alumni 

• World Leading Faculty & Staff 

– 5,000 staff 

– 200+ research groups 

– £100 million – research expenditures 

• Top 20 employer in South East England 

– £billion to local economy  

 

 

A typical European university 



University aero technology centres 

• Airbus Aircraft Noise Technology Centre 
(http://www.southampton.ac.uk/antc/) 

• Rolls-Royce University Technology Centre for 
Computational Engineering 
(http://www.soton.ac.uk/ses/research/ced/rrutc.html) 

• The Rolls-Royce University Technology Centre in Gas 
Turbine Noise 
(http://www.isvr.soton.ac.uk/fdag/History.HTM)  
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Airbus Noise Technology Centre (ANTC) 
    www.southampton.ac.uk/antc 
 
- Research support from EU, UK Government, and industry 
- Close integration with Airbus R&T objectives 

Southampton Boldrewood Innovation Campus  
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View of Block H with anechoic tunnel 
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2.1 m ×1.5 m tunnel specification 
Mach Number 0.13 

Maximum Flow Speed 45 m/s 

Reynolds Number per metre 3.1 × 106/m 

Turbulence intensity:  <0.1% at 40 m/s 

Run Time Continuous 

Test Section Size 2.1 m × 1.5 m 

Closed test section, closed 

circuit wind tunnel  
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R. J. Mitchell tunnel specification 
Mach Number 0.12 

Maximum Flow Speed 40 m/s 

Reynolds Number per metre 2.7 × 106/m 

Turbulence intensity:  <0.2% at 40 m/s 

Run Time Continuous 

Test Section Size 3.5 m × 2.44 m 

Closed test section, closed 

circuit wind tunnel 

incorporating temperature 

control 
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New anechoic tunnel specification 
Mach Number 0.23 

Maximum Flow Speed 80 m/s 

Reynolds Number per metre 5.4 x 106/m 

Turbulence intensity:  TBD 

Run Time Continuous 

Test Section Size 1.0 m x 0.75 m 

Out of Flow Background Noise 79 dBA at 80 m/s 

Open jet, closed circuit wind 

tunnel  

Anechoic chamber size: 

8.65m x 4.65m x 5.85m  



Areas of research 
• Airframe noise 

• Engine (turbofan and CROR) noise 

• Interior noise / sound transmission 

• Computational aeroacoustics 

• Aerodynamics 

• Aircraft noise model/predictive codes 

• Noise facility/test techniques 

• Flow control 



Aircraft related problems 

a) Propagation and scattering . e.g  inlet radiation, diffraction by nacelle 
geometry, scattering by liners, refraction by mean flow gradients, geometric 
spreading, far field noise prediction.   

b) Linear interaction noise – vortical gust(s) striking stationary or moving 
surfaces ( e.g interaction of non-uniform inflows and wakes with blades, 
turbomachinery cascades ..) 

c) Vortex generated broadband noise fully coupled to the mean flow (e.g 
jet mixing noise, turbulent self noise on an airfoil/blade .. )    

a) 

b) c) 



Possible classification 

– Source region: strong coupling between the aerodynamic field and 
acoustic field. The complete physics is nonlinear and coupled, and is 
described by the unsteady three-dimensional Navier-Stokes (N-S) 
equations.  

– Propagation region: weak coupling between the aerodynamic field 
and the acoustic field. The aerodynamics flow field affects the acoustic 
wave propagation without feedback from the acoustic field. Sound 
propagation can be over an inhomogeneous / non-uniform background 
mean flow. 

– Radiation region: sound radiates into the acoustic far-field, typically 
on a uniform background flow field. No coupling between the 
aerodynamics and acoustics. 

From a physical point of view, noise production and its propagation 
to the far field can be split into three zones: 



Level of approximation 

Navier-Stokes equations 

– Complete physics but expensive… 

Full Euler equations 

– Nonlinear and treat flow and acoustic coupling and sound propagation 
problems together… could generate non-physical sources 

Linearised equations  

– Linearised about a mean-flow; can admit entropic, vortical and acoustic 
disturbances… 

Convected wave equations 

– Various forms, most popular form is based on velocity potential and an 
irrotational background mean flow assumption. 
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Linearised equations 

We use linearised equations because 

• The magnitude of acoustic waves is normally several orders lower than 
its mean flow counterpart and is easily be damped. Linearisation helps 
maintain accurate solutions. 

• Large disparity between the eddy scale l and acoustic wavelength λ. In 
low Mach flow the acoustic wave generation and propagation can be 
studied separately from the mean flow. 

• The propagation effects (reflection, diffraction, etc.) can be directly 
resolved by linearised governing equations  
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What we want to do? 
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Linearised Eqs for 

Sound Propagation 

Broadband noise 

with synthesised 

turbulence, e.g. 

CROR, Fan-OGV, etc. 

Diffraction/scattering

/refraction and far-

field sound radiation, 

e.g. off aircraft 

Sound pressures around an airfoil 
using 3D synthesised turbulence 

Sound propagation out of a 
turbofan engine bypass duct 

Sound diffraction and scattering off 
aircraft and radiation to far-field 



Some of methods that we have used so far 

• LEE (linearsied Euler equations) 

• GTS (Gradient term suppression method) 

• LDE (linearsied divergence equations) 

• GTF (Gradient term filtering treatment of LEE) 

• LNS (linearised N-S equations) 
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Simulation tools 
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The ANTC has developed a suite of CFD and CAA tools, collectively known as 
SotonCAA. 
 
Zhang, X., Chen, X.X., Morfey, C.L. and Nelson, P.A. (2004) Computation of spinning modal of radiation from 
an unflanged duct,” AIAA Journal, 42(9),  1795-1801. 
 
Richards, S.K., Chen, X.X., Huang, X. and Zhang, X. (2007) Computation of fan noise radiation through an 
engine exhaust geometry with flow. International Journal of Aeroacoustics, 6(3), 223-241 
 
Huang, X., Chen, X.X,, Ma, Z.K. and Zhang, X. (2008) Efficient computation of spinning modal radiation 
through an engine bypass duct. AIAA Journal, 46(6), 1413-1423. 
 
Ma, Z.K. and Zhang, X. (2009) Numerical investigation of broadband slat noise attenuation with acoustic liner 
treatment,” AIAA Journal, 47(12), 2812-2820. 
 
Chen, X.X., Huang, X. and Zhang, X. (2009) Sound radiation from a bypass duct with bifurcations. American 
AIAA Journal, 47(2), 429-436 
 
Liu, W., Kim, J.W., Zhang, X., Angland, D. and Bastien, C. (2013) Landing gear noise prediction using high-
order finite difference schemes. Journal of Sound and Vibration, 332(14), 3517-3534. 
 
Gill, J., Zhang, X. and Joseph, P. F. (2013) Symmetric airfoil geometry effects on leading edge noise. Journal of 
the Acoustical Society of America, 134(4), 2669-2680. 



Simulation tools 
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SotonCAA can use the following governing equations: 
 

• Navier-Stokes (N-S) 

• Full Euler Equations (FEE) 

• Linearised Euler Equations (LEE) 

• Linearised Divergence Equations (LDE) 

• Linearised Euler Equations with Gradient Term Filtering (GTF) 

• Linearised Navier-Stokes (LNS) 

 



Spatial discretisation: - 6th-order prefactored compact scheme 
- 4th-order optimised prefactored compact scheme 
- 4th-order penta-diagonal scheme 

Time integration: - 4th-order RK explicit schemes 
- 2nd-order implicit LU-SGS scheme 

Filtering schemes: - Explicit filtering (up to 10th-order) 
- Adaptive non-linear artificial damping (ANAD) 
- 6th-order penta-diagonal filter 

Turbulence modelling 
(N-S solver): 

- Unsteady Reynolds Averaged Navier-Stokes (S-A model) 
- Detached-Eddy Simulation (DES/DDES/IDDES) 
- Large-Eddy Simulation (LES) 
- Zonal DES (mode I & II) 

Boundary conditions: - Solid wall (slip, non-slip, impedance) 
- Buffer zone 
- Pressure far-field 
- Synthesised turbulence 

Multi-block options: - One-to-one condition 
- Characteristic interface condition (N-S solver) 

Suite of codes on MPI and GPU platforms 
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Linearised Euler Equations (LEE) 
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Equations are derived  base on assumptions: 

• The background flow variables satisfy Euler equations. 

• The background flow amplitudes are sufficiently larger than the 
disturbances. 

• In terms of frequency, the background flow variables are much lower than 
the disturbances so they are “stationary” to the disturbances.  



Acoustic, entropy, and vorticity modes 

Wave analysis can be used to study linearised hyperbolic-type equations. 
In general, a solution of the linearised equations can be considered as a 
sum of three basic types of solutions 

– Acoustic mode,  

– Vorticity mode 

– Entropy mode  

The behaviours of acoustic mode and vorticity mode can be found through 
wave analysis. The entropy mode can generally be neglected.  

Entropy wave is produced by entropy inhomogeneities. In hyperbolic type 
of equations, it exists if 
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Examples of LEE computations 
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M∞ = 0.2 

Installation effect of landing gear  
underneath wing and cavity 

2 component synthesed 
turbulence interaction 
with an airfoil 

Gill, et al 

Angland & Zhang 



Stability issue of LEE solution 

If we assume a harmonic mode expression of perturbation variables: 

  

We have, in cylindrical coordinates , the following perturbation equation: 

 

 

With background sheared velocity or strong density gradients, instabilities in the 
solution can appear.  

Acoustic waves are generated by flow density compression and expansion. They 
have no connection to vortical and entropy waves, although they are affected by 
instabilities. 

For stable acoustic wave simulation a possible solution is to separate the acoustic 
waves from the others via a wave-splitting method. 
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Illustration of acoustic and vorticity waves 
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Pressure 
Vorticity 

Modal propagation in and radiation out of a semi-infinite duct, mode (0,1), 
frequency =500 Hz  



Instability waves and vortical modes 

• The vorticity mode results in instability waves. The instability waves 
(perturbed vorticity) can be induced either by acoustic waves crossing 
shear layers or by acoustic waves encountering geometric 
discontinuities.  

 

• In terms of sheared flow, the problem can be associated with Kelvin-
Helmholtz instability. In linear stability theory, a system of parallel 
shear flows can be absolutely or convectively unstable. A convectively 
unstable flow can be globally unstable only if there are spatially growing 
waves at the excitation acoustic frequency.  
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𝑢0 = 0.6 
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Modal radiation from an engine bypass duct 



Linearised Euler equations 

LEE would fail when simulating a convectively unstable hydrodynamic-
acoustic system when the spatially growing instability waves are generated 
by steady periodic forcing in the range of unstable frequencies.  As shown 
in the figure below, the perturbed pressure field is clearly impacted by a 
growing vorticity wave.   
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Mode (6,1),  including 4 individual frequencies 500Hz,  1000 Hz, 1500Hz and 2000Hz.   

Pressures SPL 



Gradient term suppression (GTS) LEE 
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Term associated with mean velocity gradient are ignored. 



Mode radiation out of an engine bypass duct 

θ=0 º θ =45º 

x-r plane 

Acoustic pressure 

SPL 

Single mode at m=12, n=1, f=1545 Hz (k=28) 

Acoustic pressure 

SPL 



With bifurcation inside duct 

Radial index J=20 (r=1.1 ~ 1.28 m) Plane view 

x-θ plane 

Spinning mode moving direction 



Divergence equations 
 The acoustic-mode velocity is curl-free. On the basis of Helmholtz’s 
theorem, the irrotational and solenoidal components of velocity can be 
split into independent parts, respectively the acoustic part (ignoring 
entropy effects) and the vortical part, as follows,  

𝑢 = 𝛻𝜙 + 𝛻 × 𝜓 

The acoustical velocity (𝛻𝜙 ) is curl-free and can be obtained by applying a 
divergence operator to momentum equation 

– A velocity potential equation is derived using divergence velocity 
components 

– A divergence operator is used to obtain curl-free flow data 

– Mean flow density gradient is accounted for.  
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Divergence equations 
 Starting from vector form of momentum equations 

 

 

Taking the divergence operator on the equation above, we have: 

 

 

Let 𝛿 = 𝛻 ∙ 𝑢, we have  
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Divergence equations 

We can now write an alternative form of divergence equation as 
 
 
 
 
 
where 
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Final form: 

 

 

where  
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Linearised Divergence equations (LDE) 

Finally LDE can be obtained through a linearisation process 

 

 

 

where   
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The Poisson equation involving      is solved through an iterative process. 

For uniform mean flow the above equation has a simple solution 

 

Therefore at physical boundaries such as slip-walls, this simple solution 
can be used to obtain the value of      by assuming uniform mean flow. 

 

At the inner block boundary (called one-to-one boundary) the value of      
is constantly updated using its value nearby before solving the Poisson 
equation. Normally the convergence can be reached within an iterative 
number of 10.  

Linearised Divergence equations (LDE) 
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LDE solution procedure: 

•  Solving Poisson equation for      :  

•  Calculation of tendency term: 

•  Calculation of velocity vector:    

 

Linearised Divergence equations (LDE) 
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GTF is introduced in order to include vortical modes. It keeps the form of 
LEE.  

• The time tendency term              of the momentum equation, which is a 
summation of all gradient terms, contains acoustic and vortical modes. 

• This term is filtered using a divergence operator and a curl operator to 
extract information about acoustic and vortical modes. 

• A new time tendency term is recovered 
 
 
 

               as a replacement in the LEE solving procedure.  

Gradient term filtering (GTF)  
 

56 

tu  /'

ttt

u













 '' 


 X. Zhang, X. Chen, J. Gill and X. Huang, "Gradient Term Filtering for Stable Sound Propagation with 
Linearized Euler Equations," AIAA Paper 2014-3306. 
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In practical implementations  an equivalent procedure is adapted. The 
operators are applied to the velocity vector      at time level n instead of its 
time tendency            . 

Since the velocity vector at time level n-1 has already been filtered, it is 
sufficient to filter only the velocity vector at time level n to ensure 
stability.  

• GTF is solved in Euler form with the concept of wave-splitting. 

• GTF is stable for acoustic wave simulation 

• For vortex sound, GTF is stable for many applications, such as sound 
propagating through a sheared flow. 

 

Gradient term filtering (GTF)  
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GTF solution procedure: 

•  Solving Poisson equation for                   from  

•  Calculation of velocity vector: 

•  LEE computation:    
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Computational domain Animation (acoustic pressure contours) 

GTS 

Mode (m,n)=(6,1); Four frequencies combination: f=500,1000,1500, and 2000Hz 

Modal radiation from an unflunged duct 



Near-field  sound pressure contours 

Near-field predictions 

GTS GTF 

LDE 
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Far-field directivity 

4 frequencies from 500 to 2000 Hz Single frequency at 1000 Hz 
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Further tests 

Mode (1,1), frequency = 100Hz 
Cut-on ratio = 1.158 

Mode (20,1), frequency = 1210Hz 
Cut-on ratio = 1.161 

Low frequency, low cut-on ratio High frequency, low cut-on ratio 

Near-field acoustic pressure Near-field acoustic pressure 
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Further LDE test: linear shear layer 

Morfey, C.L., et al., “New scaling laws for hot and cold jet mixing noise based on geometric acoustics model,” 
Journal of Sound and Vibration, 61, 1978, pp.255-292 
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Shear velocity profile:   
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Further tests: linear shear layer 

LEE 

Mode (6,1), frequency = 1000Hz 

LDE 
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Further tests: linear shear layer 
Mode (6,1), frequency = 2000Hz 

LEE 

LDE 
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• For the case of a semi-infinite duct case, the computing time of the GTF 
method only increases 23% compared with GTS. 

• LDE is the most expensive method. 

Model 

Propagation 

Seconds per grid per time 

step 

Computing time for 150 

acoustic wave periods 

(minutes) 

GTS 1.01×10-5 230.1 

GTF 1.23×10-5 (+23%) 281.9 

LDE 1.77×10-5(+75%) 403.7 

Comparison of computing time 

A PC was used with an E4500 Intel processor (2.2 GHz clock speed) and 
2.0 Gigabytes of memory running on a 32-bit operating system 
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KTu 600,756.0 00    

KTu 300,0 00    

y

0y 

An source is placed inside the jet which has background  
velocity and density gradients 

Density profile 

profile 0u
Acoustic source at x=0, y=0 with an 
excited frequency of 76 rad/s 

CAA Benchmark Category 4, unstable jet 



GTF 
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LDE 

Pressure contours 



Vortical gust impinging on an airfoil 

 
 

GTF LEE 

Near-field pressure contours 

M=0.3 



Far-field directivity 

• GTF has the strongest prediction in both near and far-fields. 

• This case shows that the GTF approach can model vortical waves. 

Vortical gust impinging on an airfoil 
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Application to engine: CFD mean flow 

FW-H integration surface 

338.0M

Bypass duct 

Mean flow Mach contour 
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GTS GTF 

LDE 

Application to engine: SPL 

Mode (m,n)=(13,1);  
A combination of 18 frequencies : 
200 to 3600Hz 



Comparison of Far-field directivity 

• Three methods have similar directivity pattern. 

• LDE has the highest level of RMS (root-mean-square) pressure as it starts to 
show the unstable state observed in near-field. 

Application to engine: CFD mean flow 



Outlook 

→Accurate, robust and efficient computation of propagation 
problems 

→Broadband noise problems with synthesised turbulence 

1. Homogeneous, isotropic turbulence via a summation of discrete Fourier 
components 

2. Filtering random data 

3. Synthetic eddies  

→Application to large, complex cases and account for the 
effects of scattering, diffraction, refraction, etc. 
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Summary 

. 

• Various linearised equations and treatment of LEE are 
developed, assessed and tested against a number of 
validation cases. 

• These methods and equations are used to produce stable 
and efficient computation of sound propagation. 

• We plan to extend the CAA methods to study broadband 
turbulence noise and complex problems. 

 


