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Goals and methods

Objective: Simulation of aeroacoustic flows in the presence of viscous
structures, including sound generation by turbulent eddies.
Available tool: Dispersion-Relation-Preserving (DRP) schemes based
on high-order approximation coupled with spectral optimization.

∘ C.K.W. Tam, J.C. Webb. Dispersion-relation-preserving finite difference schemes
for computational acoustics. J. Comp. Phys., 107 (1993), 262–281.

∘ C. Bogey, C. Bailly. A family of low dispersive and low dissipative explicit
schemes for flow and noise computations. J. Comp. Phys., 194 (2004), 194–214.

Very small artificial dissipation and dispersion

Algorithmic simplicity

Good for acoustics!
Is this good for viscosity? DNS/LES?

We continue our research from CEAA2012.
Now consider the benchmark of Taylor–Green vortex.
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Dispersion-Relation-Preserving schemes

Centered-difference schemes with wide stencils on uniform mesh(︂
𝜕𝜙

𝜕𝑥

)︂
𝑗

↦→ 1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙𝜙𝑗+𝑙

Tam & Webb: 𝑚 = 3 (7-point stencil);
Bogey & Bailly: 𝑚 = 4, 5, 6 (9, 11, 13 points).

Coefficients 𝑎𝑙 are obtained from a special procedure:
4th order in Δ𝑥 + optimization of spectral resolution.

Effective, or modified, wavenumber

𝑘(𝑘) =
2

Δ𝑥

𝑚∑︁
𝑗=1

𝑎𝑗 sin(𝑗𝑘Δ𝑥) . Choose 𝑎𝑗 to provide 𝑘 ≈ 𝑘.
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Dispersion relations of various centered-difference schemes

Effective wavenumber 𝑘 versus true 𝑘 in various schemes
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Application to the Navier–Stokes equations

The 3D Navier–Stokes equations

𝜕Q

𝜕𝑡
+

𝜕F𝑥

𝜕𝑥
+

𝜕F𝑦

𝜕𝑦
+

𝜕F𝑧

𝜕𝑧
=

𝜕R𝑥

𝜕𝑥
+

𝜕R𝑦

𝜕𝑦
+

𝜕R𝑧

𝜕𝑧
(*)

Q =
(︀
𝜌 𝜌𝑢 𝜌𝑣 𝜌𝑤 𝐸

)︀𝑇
,

F𝑥 =
(︀
𝜌𝑢 𝜌𝑢2 + 𝑝 𝜌𝑢𝑣 𝜌𝑢𝑤 (𝐸+𝑝)𝑢

)︀𝑇
,

F𝑦 =
(︀
𝜌𝑣 𝜌𝑢𝑣 𝜌𝑣2 + 𝑝 𝜌𝑣𝑤 (𝐸+𝑝) 𝑣

)︀𝑇
,

F𝑧 =
(︀
𝜌𝑤 𝜌𝑢𝑤 𝜌𝑣𝑤 𝜌𝑤2 + 𝑝 (𝐸+𝑝)𝑤

)︀𝑇
,

R𝑥 =
(︀
0 𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 − 𝑞𝑥

)︀𝑇
,

R𝑦 =
(︀
0 𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑦𝑧 𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 − 𝑞𝑦

)︀𝑇
,

R𝑧 =
(︀
0 𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧 𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧 − 𝑞𝑧

)︀𝑇
,

𝜏𝑥𝑥 =
4

3
𝜇
𝜕𝑢

𝜕𝑥
− 2

3
𝜇
𝜕𝑣

𝜕𝑦
− 2

3
𝜇
𝜕𝑤

𝜕𝑧
, 𝜏𝑥𝑦 = 𝜇

𝜕𝑣

𝜕𝑥
+ 𝜇

𝜕𝑢

𝜕𝑦
,

. . . , 𝑞𝑥 = −𝜆
𝜕𝑇

𝜕𝑥
, 𝑞𝑦 = −𝜆

𝜕𝑇

𝜕𝑦
, 𝑞𝑧 = −𝜆

𝜕𝑇

𝜕𝑧
.

(**)
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Application to the Navier–Stokes equations

Numerical approximation to (*)–(**), 2D case:

𝑑Q𝑗𝑘

𝑑𝑡
+

1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙F
𝑥
𝑗+𝑙,𝑘 +

1

Δ𝑦

𝑚∑︁
𝑙=−𝑚

𝑎𝑙F
𝑦
𝑗,𝑘+𝑙

=
1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙R
𝑥
𝑗+𝑙,𝑘 +

1

Δ𝑦

𝑚∑︁
𝑙=−𝑚

𝑎𝑙R
𝑦
𝑗,𝑘+𝑙 ,

(𝜏𝑥𝑥)𝑗𝑘 =
4

3
𝜇

1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙𝑢𝑗+𝑙,𝑘 − 2

3
𝜇

1

Δ𝑦

𝑚∑︁
𝑙=−𝑚

𝑎𝑙𝑣𝑗,𝑘+𝑙 , etc.

Numerical filtering

𝑑Q𝑗𝑘

𝑑𝑡
+

1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙F
𝑥
𝑗+𝑙,𝑘 +

1

Δ𝑦

𝑚∑︁
𝑙=−𝑚

𝑎𝑙F
𝑦
𝑗,𝑘+𝑙 =

1

Δ𝑥

𝑚∑︁
𝑙=−𝑚

𝑎𝑙R
𝑥
𝑗+𝑙,𝑘

+
1

Δ𝑦

𝑚∑︁
𝑙=−𝑚

𝑎𝑙R
𝑦
𝑗,𝑘+𝑙 −

𝜈𝑥
(Δ𝑥)2

𝑚∑︁
𝑙=−𝑚

𝑑𝑙Q𝑗+𝑙,𝑘 − 𝜈𝑦
(Δ𝑦)2

𝑚∑︁
𝑙=−𝑚

𝑑𝑙Q𝑗,𝑘+𝑙

𝜈𝑥, 𝜈𝑦 are empirical filtering rates; 𝑑𝑙 are specific filter parameters.
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2D Taylor–Green vortex

𝑢 = 𝑈 sin(𝑥/𝐿) cos(𝑦/𝐿),
𝑣 = −𝑈 cos(𝑥/𝐿) sin(𝑦/𝐿),
𝑝 = 𝑝0 + (𝜌0𝑈

2/8) [cos(2𝑥/𝐿)
+ cos(2𝑦/𝐿)] .

𝑇 = 𝑇0, 𝜌 = 𝑝/(𝑅𝑇 )

−𝜋𝐿 < 𝑥, 𝑦 < 𝜋𝐿 = 50,
periodic boundary conditions in
both 𝑥 and 𝑦

Re ≡ 𝜌0𝑈𝐿/𝜇0 = 100,
𝑀 ≡ 𝑈/𝑐0 = 0.1

Grid 𝑁𝑥 ×𝑁𝑦 = 100× 100,
Δ𝑥 = Δ𝑦 = 1

Hereafter, DRP Tam (7-point
stencil, 𝑚 = 3)

Streamlines and distribution of density 𝜌
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2D Taylor–Green, Re = 100. Comparison with exact

solution

𝑢𝑒𝑥 = 𝑢(𝑥, 𝑦, 0) exp{−2𝜈𝑡/𝐿2}, 𝑣𝑒𝑥 = 𝑣(𝑥, 𝑦, 0) exp{−2𝜈𝑡/𝐿2}.

(a) (b)

(a) Velocity 𝑢 versus 𝑥 in section 𝑦 = 0 for two time moments;
(b) error (𝑢− 𝑢𝑒𝑥)/𝑈
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3D Taylor–Green vortex

𝑢 = 𝑈 sin(𝑥/𝐿) cos(𝑦/𝐿) cos(𝑧/𝐿),
𝑣 = −𝑈 cos(𝑥/𝐿) sin(𝑦/𝐿) cos(𝑧/𝐿), 𝑤 = 0,

𝑝 = 𝑝0 + (𝜌0𝑈
2/16) [cos(2𝑥/𝐿) + cos(2𝑦/𝐿)] (cos(2𝑧/𝐿) + 2)

𝑇 = 𝑇0, 𝜌 = 𝑝/(𝑅𝑇 )

−𝜋𝐿 < 𝑥, 𝑦, 𝑧 < 𝜋𝐿 = 32,
periodic boundary conditions at the 6 faces

Two cases: Re = 100, Re = 1600. 𝑀 = 0.1

Grid 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 643, Δ𝑥 = Δ𝑦 = Δ𝑧 = 1
DRP Tam

∘ Brachet, M., Meiron, D., Orszag, S., et al. Small-scale structure of the
Taylor-Green vortex. J. Fluid Mech. (1983) 130:411–452.

∘ Problem C3.5 Direct numerical simulation of the Taylor-Green vortex at

Re=1600. http://www.as.dlr.de/hiocfd/case_c3.5.pdf
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3D Taylor–Green, Re = 100. Flow structure

Isosurfaces of 𝑧-vorticity 𝜔𝑧 =
𝜕𝑣/𝜕𝑥− 𝜕𝑢/𝜕𝑦 for two values

Streamlines and distribution of 𝑧-
velocity 𝑤
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3D Taylor–Green, Re = 100. Mean kinetic energy

𝐸𝑘(𝑡) =
1

8𝜋3𝐿3𝜌0𝑈2

∫︁
Ω

(1/2) 𝜌(𝑢2 + 𝑣2 + 𝑤2) 𝑑𝑥𝑑𝑦𝑑𝑧

(a) (b)

Time evolution of the mean kinetic energy 𝐸𝑘 (a) and its dissipation rate
−𝑑𝐸𝑘/𝑑𝑡 (b)
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3D Taylor–Green, Re = 1600. Flow structure

Isosurfaces of 𝑧-vorticity 𝜔𝑧 for two values
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3D Taylor–Green, Re = 1600. Mean kinetic energy

(a) (b)

Time evolution of the mean kinetic energy 𝐸𝑘 (a) and its dissipation rate
−𝑑𝐸𝑘/𝑑𝑡 (b)
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3D Taylor–Green, Re = 1600. Spectrum 𝐸(𝑘)

Instantaneous energy spectrum of velocity pulsations at 𝑡 ≈ 9 compared
with the Kolmogorov law 𝑘−5/3
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Conclusion

DRP technique provides good approximation of the Navier–Stokes
viscosity.

For high (transitional) Reynolds numbers, a filtering procedure is
needed to obtain numerical stability.

Future modifications are expected to enhance quantitative
agreement between DRP numerics and the reference data:

changing the filter parameters;
new approximation of viscous terms?
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Thanks for your attention!
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