

DNS of transition to turbulence in compressible mixing layer on heterogeneous computational clusters

A.V. Kashkovsky, A.N. Kudryavtsev, A.A. Shershnev

Khristianovich Institute of Theoretical and Applied Mechanics

Novosibirsk State University

Motivation

- Instability of supersonic free shear flows is a phenomenon of great importance in a number of aerodynamic problems.
- Mechanisms of instability emergence on transition to turbulence in free shear flows also work in other flows with free boundaries, such as jets and wakes.
- Clear understanding of process going on in high-speed mixing layers has it own fundamental value as a part of turbulence emergence problem.
- Knowing characteristics of such flows is essential in many applied problems. For example, intensive sound radiation in jet, exhausting from engine nozzle into coflow.
- Direct numerical simulation of turbulent flows even at moderate Reynolds numbers requires hundreds of hours of computational time even on high-performance computational clusters.
- One of the reasonable ways to increase efficiency and reduce computational wall-clock time is to employ modern general-purpose graphics processing units (GPGPU) with high computational and data throughput.
- Usage of heterogeneous CPU-GPU systems is currently rapidly growing and highly promising area of computing.

DNS of transition to turbulence in supersonic flat plate boundary layer at M = 6

Nonlinear interaction of 1st and 2nd modes and onset of laminar-turbulent transition. Q criterion isosurface. Computational grid consists of 30 million grid cells.

Problem Statement

Fig. Computational domain sketch in the spatially evolving mixing layer problem.

- We simulate the growth of instability waves in a spatially evolving mixing layer.
- ▶ Two supersonic flows along Z axis with $M_1 = 2.5$ and $M_2 = 1.5$ Mach numbers.
- ► Temperatures and pressures are equal: $T_1 = T_2$, $p_1 = p_2$.
- Resulting convective Mach number $M_c = (U_1 U_2)/(a_1 + a_2) = 0.5$.
- On the inflow boundary step-like initial profile with time-dependent disturbances of transverse velocity U_x is imposed.

Governing Equations

In present work numerical simulations are performed by solving 3D unsteady compressible Navier-Stokes equations:

$$\frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = \frac{1}{\text{Re}} \left(\frac{\partial \mathbf{F}_{v}}{\partial x} + \frac{\partial \mathbf{G}_{v}}{\partial y} + \frac{\partial \mathbf{H}_{v}}{\partial z} \right)$$
$$\mathbf{Q} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho v \\ \rho w \\ E \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ \rho uv \\ \rho uw \\ u(E + p) \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^{2} + p \\ \rho vw \\ v(E + p) \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} \rho w \\ \rho uw \\ \rho vw \\ \rho w^{2} + p \\ w(E + p) \end{pmatrix}$$
$$\mathbf{F}_{v} = (0, \ \tau_{xx}, \ \tau_{xy}, \ \tau_{xz}, \ u\tau_{xx} + v\tau_{xy} + w\tau_{xz} - q_{x})^{T}$$
$$\mathbf{G}_{v} = (0, \ \tau_{xz}, \ \tau_{yz}, \ \tau_{yz}, \ u\tau_{xy} + v\tau_{yy} + w\tau_{yz} - q_{y})^{T}$$
$$\mathbf{H}_{v} = (0, \ \tau_{xz}, \ \tau_{yz}, \ \tau_{zz}, \ u\tau_{xz} + v\tau_{yz} + w\tau_{zz} - q_{z})^{T}$$

Here ρ is density, p is pressure, $\mathbf{u} = (u, v, w)$ is velocity vector, *E* is total energy, \mathbf{q} is heat flux vector and $\tau_{\alpha\beta}$ are viscous stresses.

Conservative variables vector is denoted as **Q**.

Vectors F, G and H are inviscid fluxes, while F_v , G_v and H_v are viscous fluxes.

Numerical Techniques

- For convective terms discretization high-resolution shock capturing WENO scheme of 5th order by Shu & Oscher is used.
- ► For **diffuse** terms approximation central differences of **2nd order** are employed.
- Time advancement is performed with explicit four-stage low storage 4th order Runge-Kutta-Gill scheme.
- Full stencil for both inviscid and viscous terms contains 39 points.
- Boundary conditions are imposed using the ghost cells technique.

The main idea of WENO schemes is to use a piecewise polynomial reconstruction and avoid interpolation across discontinuities. WENO schemes use a convex superposition of the "candidate" stencils with adaptive coefficients.

Program Implementation

- CUDA 4/5 platform
- Multi-GPU capability
- Computational process is organized as consecutive calls of *kernels* (GPU-side functions) by main process, running on CPU
- Total memory requirements are
about 300 bytes per cell for
double-precision computations.

Fig. Flow chart of hybrid Navier-Stokes solver. CPU routines are colored **light-blue** color, GPU routines are marked with **green**. Computational phases with MPI exchange have **red dashed frames**.

Parallelization Scheme

- Data between GPUs is distributed via domain decomposition technique.
- Grid index is organized so that cells with the same i_z are in continuous memory segment
- So domain is divided into sub-domains along the Z-axis to simplify data exchange procedure and reduce number of temporary exchange buffers.

Computation Process Diagram

Mixing Layer Conditions

	2D	3D
Computational grid, $N_x \times N_y \times N_z$	$120 \times 3 \times 800 \approx 2.9 \times 10^5$ cells	$120 \times 120 \times 1200 \approx 1.7 \times 10^7$ cells
Inflow forcing	Disturbances of transverse velocity U_x , $u' = A \cos(\omega t - \alpha z) \exp(-x^2/\sigma^2)$, where $\omega = 0.68$, $\alpha = 0.34$	Disturbances of transverse velocity U_x , $u' = A \cos(\omega t - \alpha z) \exp(-x^2/\sigma^2)$ - ×
		×{1 + $\delta \sin(2\pi y/L_y)$ }, where $\omega = 0.68$, $\alpha = 0.34$
Computational resources	1×Nvidia GeForce 460GTX, 1Gb	6 ×Nvidia Tesla M2090, 6 Gb
 Values of frequency ω and wave number α corresponded to solution of linear stability problem with maximum growth rate. Mesh refined is near the centerline 		

 $L_{Z} = 800$

Mixing Layer 2D

Temperature:

Vorticity magnitude:

Entropy:

Speed-up

Speed-up measurements were performed for a computational grid consisting of $120 \times 120 \times 1000 = 14.4$ million nodes.

Efficiency for 9 GPU was about 90%.

Calculation of convective terms was the most expensive part of computation taking approximately 76% of total time while calculation of viscous terms took about 10% and interprocessor data exchange MPI another 10%.

Mean Flow Characteristics I

Numerical code was also used by research group at TsNIIMash to study spatially evolving 2D supersonic mixing layer with Mach numbers $M_1 = 2.87$, $M_2 = 1.17$ and convective Mach number $M_c = 0.86$. Computations were performed by **E.Yu. Kartseva**.

Fig. Instantaneous (top) and mean (bottom) flowfield of longitudinal velocity.

Mean Flow Characteristics II

Fig. Mixing layer thickness as function of distance from the inflow boundary.

$$\delta_{\omega} = \frac{U_1 - U_2}{\left[\partial U / \partial x\right]_{\max}}$$

Fig. Ratio of compressible mixing layer spreading rate to incompressible mixing layer spreaing rate as function of convective Mach number. $\Phi = \frac{d\delta_{0.1}/dz}{(d\delta_{0.1}/dz)_{1}}$

Conclusion and Further Work

- Multi-GPU code for solving unsteady compressible Navier-Stokes equations has been developed, verified and applied to numerical simulation of instability waves in supersonic mixing layer.
- Results of numerical simulation are in good agreement with linear theory and data, obtained by other researchers.
- ★ Further work will include:
 - ★ Optimization of WENO scheme implementation
 - Improving far-field boundary conditions
 - Numerical simulation of mixing layer development at supersonic convective Mach numbers
 - ★ Adaptation of the code for DNS of the transition to turbulence in supersonic boundary layers.

Thank You for Your Attention