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Installed Jet Noise 

 Very limited near-field flow region (CFD) 
 Viscous dissipation, non-linearity, shocks 

 very fine turbulent eddies – especially in interior of the nozzle 

 Large far-field noise propagation region (CAA) 
 Inviscid, nearly linear 

 Relatively large time and length scales  

 

Uninstalled jet noise Installed jet noise 3 



 Different flow physics 

 Strong non-linear fluctuations in the source region 

 Weak acoustic fluctuations outside the mixing layer 

 Simultaneous simulation required 

 Non-linearity causes numerical difficulties 

 Non-reflecting BCs, dispersion/dissipation errors 
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Complex Flow Physics 

Installed jet noise 



 Splitting: mean flows + disturbances 

 

 

 

 Linearized N-S equations 

 

 
 

 Parabolic Stability Equation (PSE)  

 

 

 Convective instability modes in jets  
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Linearized Equations 

Mean Disturbance 

Gudmundsson and Colonius, 2011 

Herbert, 1994 



 Linearized Euler Equation 

 

 

 

 
 

 Pros: Ideal for noise propagation simulation:  

 Better accuracy and non-reflecting BC treatment, less cost 

 Cons: Noise sources absent 

 Coupled with the near-field LES of a separate computation 

 Flow exchanged at fixed interfaces/overlapping regions 
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Linearized equations 

Q: A single equation & computation  
for flow/acoustic simulations in segregated domains ? 



CFD/CAA: Coupled or Decoupled? 

 Decoupled: 

 Near-field LES + Acoustic analogy (FWH, Kirchhoff …) 

 Challenging for installed jets 

 requires a very large domain to include installed geometries 

 Loosely coupled: 

 Separate near-field LES + far-field LEE 

 Feasible for installed jets 

 Data communication? 

 Fully coupled: 

 DNS (Direct Noise Simulation) 

 Not affordable for complex installed jets 

Our goal: 
Closely coupled 

CFD/CAA 
in a single 

computation 
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Coupled CFD/CAA? 

 Data communication? 

 Domain splitting 

Loosely coupled via source 
terms 

Closely coupled with a soft interface/zone (The 
present study) 

Hemeda and Elhadidi, 2014. AIAA J. 

Bogey et al., 2002, AIAA J. 
Ewert et al., AIAA 2014-3053. 

Source term extracted from a 
separate LES computation or 
stochastic sound sources 

Inner 

Outer 
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A Previous Related Approach 

 Non-Linear Disturbance Equations (NLDE)  

 Flow splitting: mean + disturbances 

 Rearrangement of the exact N-S equations 

 LHS: disturbances 

 RHS: mean flow only 

 Pros: 

 Smaller domain 

 Better BC treatments 

 Cons: 

 Complex formulation 

 

Morris et al.. 1997 

Slat noise 
Labourasse and Sagaut, 

2004 
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Compact Disturbance Equations 

 A compact decomposition 

 Previously: decomposition of the primitive variables 

 

 

 

 Now: compact decomposition 

 

Mean/Base Disturbance 

Disturbance 

No assumptions are made about U and U’ 
Mean/Base flow can be arbitrary 

Mean/Base 
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Coupled Navier-Stokes/LEE 

 Compact decomposition 

 A scaling factor    to switch on/off nonlinear terms 

Momentum 

Momentum flux 

Linear Non-linear 

Linear Non-linear 

Base 

Base 
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Combined Navier-Stokes/LEE 

 Momentum disturbance 

 

 

 

 

 Momentum flux disturbance 

 

Linear Non-linear 

Linear Non-linear 
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Mathematical Properties 

 Flux Jacobian Matrix 
Linear Non-linear 

Flux Jacobian 
matrix 
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 Flux Jacobian Matrix 

Mathematical Properties 

Flux Jacobian 
matrix 
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• Eigenvalues and eigenvectors for: 
• Stability analysis 
• Characteristic decomposition for boundary and 

interface conditions 
• Numerical methods: 

• Explicit artificial dissipation 
• Limiters in Roe-type splitting in FD/FV 

methods 
• and more 



Compact Disturbance Equations (CDE) 

 Exact rearrangement of the Navier-Stokes equation 

 

Non-linear terms 
Linear viscous 
disturbances 

Non-linear 
viscous 

disturbances 

Base 

Linear terms 
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Benefits and Implementation 

 Reduced computational cost 
 

 Relatively inexpensive RANS base simulation for complex 
configurations 

 Can use unstructured meshes 

 Can use third-party solvers 

 

 LES in a reduced simpler domain, optimal grid distribution 
and BCs 
 Reconstruct flux disturbances only 

 Minor changes with turbulence models 

 

 Hybrid RANS/LES 

 
Interpolation 16 



CDE Equation Options 
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Reduced Equations Embedded in the CDE 

Equations Viscous 
disturbances 

Nonlinear terms 

Full NS Yes Yes 

LNS Yes No 

Full Euler No Yes 

LEE No No 



Qualitative Demonstration 

 Base flow: RANS simulation (S-A model) 

 Unsteady disturbances: CDE 

 α=1 near the shear layer, α=0 outside. 

2D supersonic jet, Mj=1.5 

CDE 
(LES) 

CDE 
(LNS/LEE) 

CDE 

Base, steady RANS computation Unsteady disturbances, CDE 

RANS 
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Implementation 

 Major features of CFD solver: CHOPA 

 Multi-block structured meshes 

 URANS and CDE 

 Spalart-Allmaras, Standard DES, Implicit LES 

 4th order DRP 

 Dual-time stepping for unsteady simulations 

 Multi-grid 

 Implicit residual smoothing 

• Yongle Du, Ching-Wen Kuo, Philip J. Morris and Dennis K. McLaughlin, 2012. Simulations and measurements of the flow 
and noise in hot supersonic jets. Noise Control Engineering Journal. 60(5): 577-594.  

• Yongle Du and Philip J. Morris, 2012. Numerical investigation of the noise source locations of supersonic jets using the 
beamformed method. AIAA-2012-1169. 

• Ching-wen Kuo, Yongle Du, Dennis K. McLaughlin and Philip J. Morris, 2012. Experimental and computational study of 
near field/far Field correlations in supersonic jet noise. AIAA 2012-1170.  

• Yongle Du and Philip J. Morris, 2011. Supersonic jet noise simulations for chevron nozzles. AIAA 2011-2787.  
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 Purpose: 

 Accuracy of the LEE embedded in CDE 
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First Application: Acoustic Waves 
 in a 2D Jet 

Mean axial velocity 

Sources 

3rd CAA Workshop 

P’/P0 ~ 10-12 

Every 4th point 



21 
t=90 and y=1 

MS 

MS 

First Application: Acoustic Waves 
 in a 2D Jet 



Second Application: Trailing Edge 
Scattering 

 Purpose 

 Viscous computations: CDE recovers the full NS 

 Two-step computation: 

 1. Steady laminar, 0.14M points 

 2. Unsteady CDE, 0.26M points  

 CDE computation in a reduced domain 

 

Initial pressure source 
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4th CAA Workshop 



 No sponge zone  

 Dong’s radiation BC based on disturbances around 
the local base flows 

 

2
3 Every fifth point 

Second Application: Trailing Edge 
Scattering 



Steady State Laminar Solution 
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 Solutions 

 

2
5 

t=90 

Center of the initial pulse  

Second Application: Trailing Edge 
Scattering 



 SMC-015 
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1.4,  1.4,  2.3d jM M TTR  

Third Application:  
Supersonic Jet Noise 



 RANS and CDE domains 

 Viscous disturbances not included - additional ~30% 
saving of computational load 

Steady base, 7M points CDE unsteady, 13M points 
Can be further reduced in radial direction 
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Third Application:  
Supersonic Jet Noise 



 Noise spectra 
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Third Application:  
Supersonic Jet Noise 



 Acoustic scattering from a circular cylinder 
 Diameter of the cylinder: D=1 

 α specified currently for validation purpose 

 Effects of the sizes of the nonlinear region, the transition 
between nonlinear and linear regions.) 

 

An Ongoing Test 

α 

CDE 
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Conclusions & Future work 

 Compact Disturbance Equations 

 Rearrangement of the NS equation 

 Minor changes in existing codes to implement 

 Two-step computation: 

 Steady base simulation in a larger, complex domain 

 Unsteady disturbances in a smaller, simpler domain 

 Benefits demonstrated by three benchmark tests:  

 Reduced computational cost 

 Optimal grid distribution for unsteady simulations 

 Closely coupled CFD/CAA for installed jet noise simulations 
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Jet Noise Reduction 

 Noise from tactical fighter aircraft may cause Noise 
Induced Hearing Loss (NIHL) 

 Sailors exposed to high levels of noise before and 
during take-off 

 Hearing protection is not sufficient (helmets and 
earplugs) 

 Need for noise reduction at the source 

 Experiments at Penn State demonstrate a new 
fluidic injection method for noise reduction 

 Based on the corrugated seal concept by Seiner 
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Fluidic Inserts 

32 

12 injectors and 6 fluidic inserts 



Jet Noise Reduction 
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Future Opportunities 

 Optimum design for noise reduction 

 Adjoint Methods 

 Unsteady adjoint solutions 

 Wei & Freund – 2006 (Noise controlled free shear 
layer) 

 Kim, Bodony & Freund - 2011 (Mach 1.3 Jet) 

 Steady solutions 

 Sikarwar & Morris – 2014 (Blowing in C-D nozzle) 
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Optimum Blowing Example 
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C-D Nozzle 

Blowing ports 



Optimum Blowing Example 

36 

Initial pressure difference 

After four design cycles 

Centerline pressure difference 



Comments and Future Plans 

 The noise reductions hold up in forward flight 

 Transition to larger scale at PSU 

 CFD to examine effects of Reynolds on injectors. 

 Consider non-circular nozzles 

 Improve correspondence of CFD adjoint work with 
experimental geometry 

  Work with General Electric to examine issues at a 7 
x larger scale – there are significant engineering 
challenges, 
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Effect of Forward Flight 
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