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Grid Design

 



 



 

Source points and enforcement points 



 

Computational plane with multi-size grids



 

 

Elliptic mesh to provide a high resolution grid at the tip of casing and hub 

Overset method is used to 
transfer data from elliptic 
grid to Cartesian grid.



 

Physical Plane Computational Plane





 
The physical domain - domain extends 5 D for directivity computation 



Computational Model and Algorithm

Mean flow computation

Full Euler equations

Acoustic Computation

Linearized Euler equations

Time-marching algorithm

Multi-size-mesh Multi-time-step DRP scheme









 

Boundary conditions













Time marching computation

Governing equations are discretized and time marched according to 
the multi-size-mesh multi-time-step dispersion-relation-preserving 
(DRP) scheme. 
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Code Validation

JT-15D Static Test data

L.J. Heidelberg, E.J. Rice, L. Homyak, Acoustic performance of inlet suppressors 
on an engine generating a single mode, American Institute of Aeronautics and 
Astronautics Paper 81-1965, 1981.

K.J. Baumeister, S.J. Horowitz, Finite element-integral acoustic simulation of 
JT15D turbofan engine, Journal of Vibration, Acoustics, Stress, and Reliability in 
Design 106 (1984) 405–413.

JT15D engine inlet geometry



Test conditions

28 blades,  41 rods  , blade passage frequency 3150 Hz

Cut-off ratio = 1.05

Mfan face = 0.147 ,  Mflight = 0

Only one propagating mode with m = 13, n = 1

3 Test cases
(a) Hard wall 

(b) Liner    Z = 0.638 + i 0.5

Z = 1.136 + i 0.5



Hard Wall 



Acoustic Liner

Z = 0.638 + i 0.5



Acoustic Liner

Z = 1.136 + i 0.5



Interesting / Puzzling engine inlet radiation 

phenomena observed



QuickTime™ and a
mpeg4 decompressor

are needed to see this picture.



Azimuthal mode number, m=22;  radial mode number, n=1;  frequency, f=6400 
Hz

No forward flightForward flight Mach number =0.2



Why is there such a large change in 

directivity    for a low flight Mach number of 

0.2 ?



Another example

Consider the radiation of the same duct mode (with 

the same m and n) but at different frequencies.



Fan face Mach number, Mfan = 0.4;  m = 22;  n = 1

No forward flightFlight Mach number = 0.2



Why is there no frequency effect at 

static condition, but significant effect 

when there is forward flight ?



Another example of 
complexity

Consider the radiation of duct mode with 

the same frequency, the same radial 

mode number, but with different 

azimuthal mode number.



Fan Face Mach number = 0.4;  f =  6400 Hz;  n = 1

No forward flightFlight Mach number = 0.2



Why is there no azimuthal mode 

number effect at static condition, but 

significant effect when there is 

forward flight ?



Another example
Radiation of duct modes with second radial mode number, n = 
2. 

Radiation splits into two beams



Relative intensity of the two beams are affected by forward 
flight.

But why ??



The mean flow around the engine casing 

turns out would play a crucial role in all the 

phenomena just shown.

























Diffraction pattern around engine casing : m=22, n=1, 
frequency=6400 Hz,         = 0.4M fan





















Diffraction effect is more dominant than refraction 



















QuickTime™ and a
mpeg4 decompressor

are needed to see this picture.



Fan face Mach number, Mfan = 0.4;  m = 22;  n = 1

No forward flightFlight Mach number = 0.2

Frequency variation



Variation of duct mode wavelength with frequency



Dependence of effect of diffraction on 
wavelength/frequency

Short waves are less affected by diffraction



Dependence of effect of diffraction on 
wavelength/frequency



Dependence of effect of refraction on 
wavelength/frequency

Localized velocity gradients have little influence on the 
propagation of long waves

Localized velocity gradients have a much large impact on  
the propagation of short waves



Fan face Mach number, Mfan = 0.4;  m = 22;  n = 1



Fan Face Mach number = 0.4;  f =  6400 Hz;  n = 1

No forward flightFlight Mach number = 0.2

Azimuthal mode number variation



Variation of duct mode wavelength with azimuthal mode number

Low azimuthal wave number duct modes have shorter wave lengths



Fan Face Mach number = 0.4;  f =  6400 Hz;  n = 1

No forward flightFlight Mach number = 0.2

Azimuthal mode number variation

Frequency variation



Higher order radial modes, n = 2 +







Relative intensity of the two beams are affected by forward 
flight.

















Summary and Conclusions

1. Jet engine inlet radiation is controlled largely by two physical 
processes.

(a) Diffraction (natural tendency for acoustic waves to follow 
a solid surface.

(b) Refraction (the change in direction of radiation due to 
mean flow velocity gradients).

2.  Refraction effect on direction of radiation at static condition is 
opposite to that when there is forward flight.

3.. Axial acoustic wave number is an important parameter 
influencing the rotation of the direction of radiation due to 
diffraction and refraction.
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Summary and Conclusions

4. Prediction formulas for principal direction of radiation from 
engine inlets developed prior to 1990 are generally not 
applicable to modern jet engines.

e.g. Rice, E.J., Heidmann, M.F. & Soffrin, T.G. 1979 “Modal 
Propagation Angles in a Cylindrical Duct with Flow and their 
Relation to Sound Radiation,” AIAA Paper 79-0183.

Based on exact solution of zero thickness cylindrical duct 
(Wiener-Hopf technique; no refraction)
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SDT inlet geometry, m = 22, n = 1.  Full line = Rice et al formula,

black circle = numerical simulation



SDT inlet geometry, f = 6400 Hz, n = 1.  Full line = Rice et al formula,

black square = numerical simulation



SDT inlet geometry, m = 22, n = 1.  Full line = Rice et al formula,

black circle = numerical simulation



Principal Conclusion

Data from static engine tests cannot be used to 
predict the directivity and spectra of the engine 
when in forward flight.  This is because the 
physics involved in the two cases are quite 
difference.
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