Acoustic Field Around a Transonic Cavity Flow

Gaëtan Loupy and George Barakos

CFD Laboratory
School of Engineering
University of Glasgow
James Watt South Building
G12 8QQ, Glasgow
George.barakos@glasgow.ac.uk
Cavity Flow

- Weapon bay are used in modern aircraft:
 - UCAV.
 - F-35.

- Complex cavity flow physics:
 - Feedback loop.
 - Rossiter modes.
 - CFD needs LES, DES, SAS for this flow.

- Cavity flows are characterized by:
 - Large unsteadiness.
 - High levels of noise.
 - Complex waves/shear layer interactions.

- Leading to:
 - Structure fatigue.
 - Stealth reduction.
 - Store release variability.

Boeing X-45 Weapon Bay.

Schlieren image of a cavity flow at M=0.85. DES simulation.
Noise Analysis

- Tools commonly used for cavity flows:
 - Sound Pressure Levels (SPL)
 - Overall Sound Pressure Levels (OASPL)

- Drawbacks:
 - Applicable in wind tunnel test to a limited number of probe points.
 - The temporal fluctuations are not known.

- Application of two more advanced noise field analysis:

 - The beamforming: analysis of the entire noise field with a microphone array.
 - The wavelet transform: spatio-temporal analysis of the noise.
CFD Solver – Core HMB3 Features

- Control volume method
- **Parallel** - Shared and Distributed memory
- **Multi-block structured grids** - Complex geometries
- **Fully-Implicit** time marching / **Frequency** domain
- Osher, Roe, AUSM+/UP schemes for all Mach numbers
- MUSCL scheme for formally 3rd order accuracy
- Central differences for viscous fluxes
- Krylov subspace linear solver with pre-conditioning
- RANS, URANS, LES, DES, SAS, turbulence and transition models
- Actuator Disk method
- Blade Actuation, Aeroelasticity, Rotor Trimming
- Moving/Deforming grids, Sliding Planes, Overset
- Steady Hover formulation, Unsteady Wind-tunnel and Vehicle formulations
- **Adjoint Method** for computing aerodynamic derivatives
- Validation Database
- Utilities for processing data, structural models etc.
- Used by Academics and Engineers
Cavity Computations with HMB

- Key journal papers:
 - HMB is validated for cavity flows.
Geometry & Conditions

- **Idealised clean cavity:**
 - \(L = 3.59 \text{m} \)
 - \(L/D = 7 \)
 - \(W/D = 2 \)

- **Main parameters:**
 - \(M = 0.85 \)
 - \(\text{Re}_L = 6.5 \text{million} \)
 - SAS \(k-\omega \)
 - \(dt = 1\% \) of bay crossing time
 - 34 millions cells
Beamforming Analysis

- Use of a **microphone (sensor) array** for noise analysis:
 - Multi-spiral distribution.
 - 101 sensors.
 - 2 and 4 cavity depth from shear layer

- A grid of discrete points in space is scanned.
Beamforming Analysis

- Delay and Sum Beamforming:
 - For each of the m sensors a time delay Δ_m from the source and a reference sensor (0) is calculated:

$$\Delta_m = \frac{r_m - r_0}{c}$$

- The beamformer output is given by $Z(\omega)$:

$$Z(\omega) = \mathcal{F} \left\{ \sum_{m=0}^{M-1} y_m(t - \Delta_m) \right\} = \sum_{m=0}^{M-1} Y_\omega e^{-j\Delta_m \omega}.$$

 $y_m(t)$ is the signal from each sensor.

- The accuracy of the result depends on the distances computation:
 - Hypothesis on wave propagation.
Computation of Distances

Planar wave propagation:
- No matching with the BISPL.
- This hypothesis is not valid.

The velocity flowfield has to be taken into account:
- Freestream at M0.85
- The waves are transported.
Computation of Distances

1. The path from a scan point to a microphone is computed taking into account the flowfield.
2. The wave travel on a distance d_{travel} at a mean velocity c_{travel}.
3. The equivalent distance at a speed c is:

$$r_m = d_{\text{travel}} \frac{c}{c_{\text{travel}}}$$

Ideal propagation model (Arrays 2 and 4).

Full propagation model (Arrays 2 and 4).
Array Position

- Array 2 is **too close** to the cavity:
 - The shear layer is not captured.

- Array 4 has better result:
 - The shear layer is captured.
 - The middle source is not correctly localised.

- Arrays 2 and 4:
 - The two shear layer sources agree with the BISPL.
 - The **combination** give a **better vertical accuracy**.

Beamforming for different array position with full propagation model. (Doors 110 degrees)
Mode shapes

BISPL for modes 1 to 3 (Doors 110 degrees).

Beamforming for modes 1 to 3 (Doors 110 degrees).
Wavelet Transform

- A spectral decomposition of a signal shows what are the **main frequencies** but does not show **when they appear**.
- The Wavelet Transform shows the **distribution of the energy** in the **frequencies** at every instance in time.
- Give the **spatio-temporal fluctuations** of the pressure field.

Scalogram for doors at 110 degrees at aft wall lip centre.

BIW at the cavity centreplan for mode 1 at an instance in time.
Cavity Flow Pressure Fluctuations

- Nodes and antinodes.
- Phase opposition between two antinodes.
- Cavity flow tones are produced by standing waves.

BIW at the cavity centreplan.

BIW at the cavity ceiling for the store at carriage.
Cavity Flow Pressure Modulations

- BIW envelop show the peaks amplitude.
- The nodes and antinodes are more visible.
- The standing waves are modulated in time.

BIW envelop at the cavity ceiling for the doors at 110 degree.

BIW envelop at the cavity centreline
M219 Pressure Fluctuations

- M219 Cavity experiments by Nightingale et al.

- Ideal cavity.
- $M=0.85$
- $L/D=5$
- $Re_L: 6.5$ million
- 10 kulites along the ceiling
- 3 sec signal.

Standing waves.

Standing wave modulation.

Mode switching.
1. Initialisation:
 - Closed cavity flow.
 - The flow impinges the cavity ceiling.
 - A vortex forms at the cavity front.

2. Transition:
 - The front vortex grows.
 - The attachment point reaches the aft wall.

3. Shear layer development:
 - Open cavity flow.

Cavity Flow Door Opening

- The wavelet is able to **track transitory state** of the opening:
 - The **travel of the jet** is visible during transition.
 - The different door velocities show different transition strength.

Spatio-temporal fluctuations along the cavity ceiling of the cavity opening.

Jet path

- **Slow** - 110 deg/s
- **Medium** - 220 deg/s
- **Fast** - 440 deg/s
The mode 1 is **trigged by the transition**.

- The modes 2 and 3 noticeably increase from 70 degrees.
 - **Pacifying effect** of the doors for small angle.

Spatio-temporal fluctuations along the cavity ceiling of the cavity opening (220 deg/s) for modes 1 to 3.
Noise directivity at 2 cavity depths from the shear layer.

Sound waves are transported downstream by the flowfield.

- More noise is generated at the aft wall.
- The directivity is larger over the second half of the cavity.
- The flowfield transports the sound waves downstream.
- More noise is generated at the aft wall.

Simulation of the noise propagation with the full wave propagation model.
Summary and Conclusion

- Beamforming:
 - The mean flowfield has to be taken into account to be accurate.
 - Able to localise the main sources of noise at the shear layer.
 - Captures the mode shapes.
 - Applicable to wind tunnel with PIV measurements.

- Wavelet transform:
 - Extracts the spatio-temporal fluctuations of the noise.
 - Exhibits a standing wave like behaviour for shallow cavity flow.
 - Tracks the noise fluctuations of unsteady phases of cavity flow.

- Noise propagation:
 - The flowfield has large influence on the noise propagation.
 - A large part of the noise radiate over the second half of the cavity.