

F.Xavier Trias*, Andrey Gorobets*,*, Alexey Duben*, Assensi Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

Fourth International Workshop
"Computational Experiment in AeroAcoustics"
September 21:24, 2016, Svetlogorsk, Russia

F.Xavier Trias*, Andrey Gorobets*,*, Alexey Duben*, Assensi Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

*Keldysh Institute of Applied Mathematics of RAS, Russia

Contents

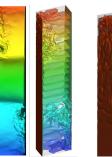
- DNS of turbulence
- 2 Building a new subgrid characteristic length
- Results
- 4 Conclusions

Main features of the DNS code:

DNS of turbulence

0000

- Structured staggered grids
- High-order symmetry-preserving schemes
- Fully-explicit second-order time-integration method
- Poisson solver for 2.5D problems: FFT + PCG
- Hybrid MPI+OpenMP parallelization
- OpenCL-based extension for its use on GPGPU

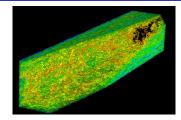


Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points), 2008

Results

Plane impingement jet at Re = 20000 (102M grid points), 2011

DNS of turbulent incompressible flows

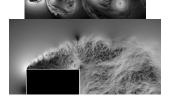


DNS of turbulence 0000

Square duct at $Re_{\tau} = 1200$ (172M grid points), 2013

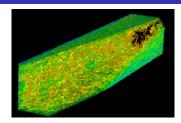


Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points), 2008



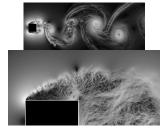
Plane impingement jet at Re = 20000 (102M grid points), 2011

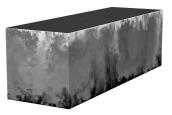
DNS of turbulent incompressible flows



0000

Square duct at $Re_{\tau}=1200$ (172M grid points), 2013

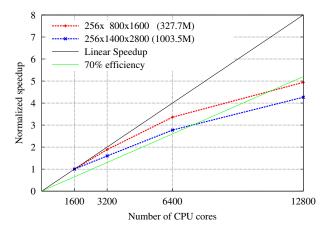




Rayleigh-Bénard convection at $Ra = 10^{10}$ (607M grid points), 2015

Square cylinder at Re = 22000 (324M grid points), 2014

Scaling is possible¹... but never enough



¹A.Gorobets, F.X.Trias, A.Oliva. *A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows*, **Computers&Fluids**, 88:764-772, 2013

$$\begin{split} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} &= \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow \tau \; (\overline{u}) = -2 \nu_e S(\overline{u}) \end{split}$$

²F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

$$\begin{split} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} &= \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow \tau \; (\overline{u}) = -2\nu_e S(\overline{u}) \\ \hline \nu_e &= (C_m \delta)^2 D_m(\overline{u}) \end{split}$$

²F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

$$\begin{split} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} &= \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow \tau \; (\overline{u}) = -2\nu_e S(\overline{u}) \\ \hline \nu_e &= (C_m \delta)^2 D_m(\overline{u}) \end{split}$$

$$D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$$
 $QR\text{-model (2011), }\sigma\text{-model (2011), S3PQR}^2 (2015)...$

²F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

$$\begin{split} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} &= \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \underline{\tau}(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow \underline{\tau} \; (\overline{u}) = -2 \nu_e S(\overline{u}) \\ \hline \nu_e &= (C_m \delta)^2 \underline{D}_m(\overline{u}) \end{split}$$

$$D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$$

QR-model (2011), σ -model (2011), S3PQR² (2015)...

 $C_m \longrightarrow \text{Germano's dynamic model (1991), Lagrangian dynamic (1995),}$ Global dynamic approach (2006)

²F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

$$\begin{split} \partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} &= \nabla^2 \overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0 \\ \text{eddy-viscosity} &\longrightarrow \tau \; (\overline{u}) = -2 \nu_e S(\overline{u}) \\ \hline \\ \nu_e &= (C_m \delta)^2 D_m(\overline{u}) \end{split}$$

$$D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$$

QR-model (2011), σ -model (2011), S3PQR² (2015)...

 $C_m \longrightarrow \text{Germano's dynamic model (1991), Lagrangian dynamic (1995),}$ Global dynamic approach (2006)

 δ ?

²F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

In the context of LES, most popular (by far) is:

$$\delta_{\rm vol} = (\Delta x \Delta y \Delta z)^{1/3} \longleftarrow \text{Deardorff (1970)}$$

$$\delta_{\rm Sco} = f(a_1, a_2) \delta_{\rm vol}, \qquad \delta_{L^2} = \sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)/3}$$

In the context of LES, most popular (by far) is:

• In the context of DES:

$$\delta_{\mathsf{max}} = \mathsf{max}(\Delta x, \Delta y, \Delta z)$$
 \iff Sparlart et al. (1997)

Recent flow-dependant definitions

Research question:

• Can we find a **simple and robust** definition of δ that minimizes the effect of **mesh anisotropies** on the performance of subgrid-scale models?

Research question:

• Can we find a **simple and robust** definition of δ that minimizes the effect of **mesh anisotropies** on the performance of subgrid-scale models?

Starting point:

physical space computational space where for a Cartesian grid
$$\Delta \equiv \begin{bmatrix} \Delta x & & \\ & \Delta y & \\ & & \Delta z \end{bmatrix}$$

Idea: δ , appears in a natural way when we consider the leading term of the Taylor series expansion of the subgrid stress tensor,

$$\tau(\overline{u}) = \frac{\delta^2}{12}GG^T + \mathcal{O}(\delta^4)$$
physical space

$$\tau(\overline{u}) = \frac{1}{12} G_{\delta} G_{\delta}^{T} + \mathcal{O}(\delta^{4})$$
computational space

Idea: δ , appears in a natural way when we consider the leading term of the Taylor series expansion of the subgrid stress tensor,

$$\underline{\tau(\overline{u}) = \frac{\delta^2}{12} GG^T + \mathcal{O}(\delta^4)} \qquad \underline{\tau(\overline{u}) = \frac{1}{12} G_\delta G_\delta^T + \mathcal{O}(\delta^4)} \\
\text{physical space} \qquad \underline{\tau(\overline{u}) = \frac{1}{12} G_\delta G_\delta^T + \mathcal{O}(\delta^4)}$$

A **least-square minimization** leads to

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^T:GG^T}{GG^T:GG^T}}$$

$$\delta_{\text{lsq}} = \sqrt{\frac{G_{\delta}G_{\delta}^{\mathsf{T}} : GG^{\mathsf{T}}}{GG^{\mathsf{T}} : GG^{\mathsf{T}}}}$$

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

• Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{\mathsf{T}} : GG^{\mathsf{T}}}{GG^{\mathsf{T}} : GG^{\mathsf{T}}}}$$

- Locally defined: only G and Δ needed $(G_{\delta} \equiv G\Delta)$
- Well-bounded: $\Delta x \leqslant \delta_{\mathrm{lsq}} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^T : GG^T}{GG^T : GG^T}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leqslant \delta_{\mathrm{lsq}} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)
- ullet Sensitive to flow orientation, e.g. for rotating flows ($G=\Omega$)

$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leqslant \delta_{\mathrm{lsq}} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)
- ullet Sensitive to flow orientation, e.g. for rotating flows ($G=\Omega$)

$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

Applicable to unstructured meshes

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^{T}:GG^{T}}{GG^{T}:GG^{T}}}$$

- Locally defined: only G and Δ needed ($G_{\delta} \equiv G\Delta$)
- Well-bounded: $\Delta x \leqslant \delta_{\mathrm{lsq}} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)
- ullet Sensitive to flow orientation, e.g. for rotating flows ($G=\Omega$)

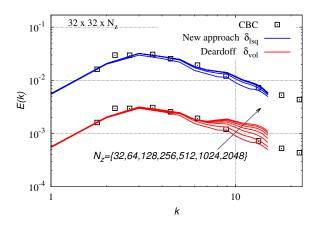
$$\delta_{\rm lsq} = \sqrt{\frac{\omega_x^2(\Delta y^2 + \Delta z^2) + \omega_y^2(\Delta x^2 + \Delta z^2) + \omega_z^2(\Delta x^2 + \Delta y^2)}{2|\omega|^2}}$$

- Applicable to unstructured meshes
- Easy and cheap

Results for LES

Decaying isotropic turbulence

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment



Results for LES

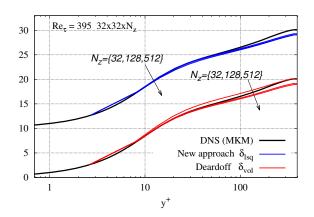
Turbulent channel flow

$$Re_{\tau}=395$$

DNS Moser et al.

LES $32 \times 32 \times N_z$

Results 000000



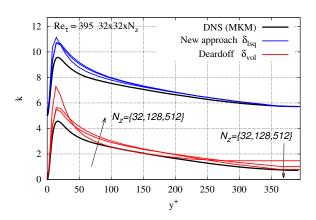
Results for LES

Turbulent channel flow

$$Re_{\tau}=395$$

DNS Moser et al.

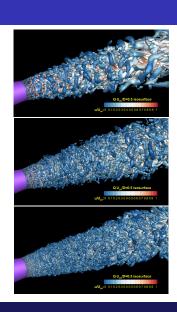
LES $32 \times 32 \times N_z$



Results for DES

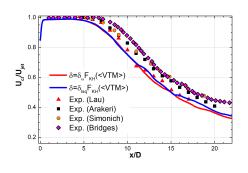
Turbulent round jet

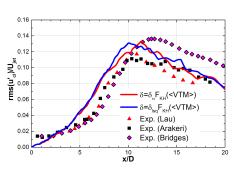
- $Re = 1.1 \times 10^6$
- M = 0.9
- DES results using NOISEtte code
- Meshes: **1.52M**, 4.13M and 8.87M
- Comparison of $\tilde{\delta}_{\omega}$ (Shur et al., 2015, with adaptation for unstructured grids) and δ_{lsq}

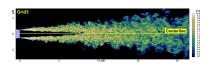


Results for DES

Turbulent round jet

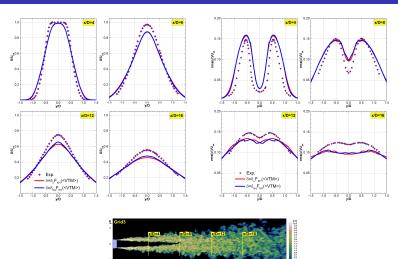






Results for DES

Turbulent round jet



Concluding remarks

ullet A new definition for δ has been proposed

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^T:GG^T}{GG^T:GG^T}}$$

- It is locally defined, well-bounded, cheap and easy to implement.
- LES tests: HIT, turbulent channel flow √
- DES tests: turbulent jet √

Concluding remarks

ullet A new definition for δ has been proposed

$$\delta_{\rm lsq} = \sqrt{\frac{G_{\delta}G_{\delta}^T:GG^T}{GG^T:GG^T}}$$

- It is locally defined, well-bounded, cheap and easy to implement.
- LES tests: HIT, turbulent channel flow √
- DES tests: turbulent jet √

Takeaway message:

ullet Definition of δ can have a big effect on simulation results

Thank you for your attention