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Introduction

We are interested in solving a hyperbolic conservation law

ut + f(u)x = 0

In 2D it is

ut + f(u)x + g(u)y = 0

and in system cases u is a vector, and the Jacobian f ′(u) is

diagonalizable with real eigenvalues.
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To solve the hyperbolic conservation law:

ut + f(u)x = 0, (1)

we multiply the equation with a test function v, integrate over a cell

Ij = [xj− 1
2
, xj+ 1

2
], and integrate by parts:

∫

Ij

utvdx −
∫

Ij

f(u)vxdx + f(uj+ 1
2
)vj+ 1

2
− f(uj− 1

2
)vj− 1

2
= 0
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Now assume both the solution u and the test function v come from a finite

dimensional approximation space Vh, which is usually taken as the space

of piecewise polynomials of degree up to k:

Vh =
{

v : v|Ij
∈ P k(Ij), j = 1, · · · , N

}

However, the boundary terms f(uj+ 1
2
), vj+ 1

2
etc. are not well defined

when u and v are in this space, as they are discontinuous at the cell

interfaces.
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From the conservation and stability (upwinding) considerations, we take

• A single valued monotone numerical flux to replace f(uj+ 1
2
):

f̂j+ 1
2

= f̂(u−
j+ 1

2

, u+
j+ 1

2

)

where f̂(u, u) = f(u) (consistency); f̂(↑, ↓) (monotonicity) and f̂ is

Lipschitz continuous with respect to both arguments.

• Values from inside Ij for the test function v

v−
j+ 1

2

, v+
j− 1

2
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Hence the DG scheme is: find u ∈ Vh such that
∫

Ij

utvdx −
∫

Ij

f(u)vxdx + f̂j+ 1
2
v−

j+ 1
2

− f̂j− 1
2
v+

j− 1
2

= 0 (2)

for all v ∈ Vh.
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Time discretization could be by the TVD Runge-Kutta method (Shu and

Osher, JCP 88). For the semi-discrete scheme:

du

dt
= L(u)

where L(u) is a discretization of the spatial operator, the third order TVD

Runge-Kutta is simply:

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))
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Properties and advantages of the DG method:

• Easy handling of complicated geometry and boundary conditions

(common to all finite element methods). Allowing hanging nodes in the

mesh (unique to DG);

• Compact. Communication only with immediate neighbors, regardless

of the order of the scheme;

• Explicit. Because of the discontinuous basis, the mass matrix is local

to the cell, resulting in explicit time stepping (no systems to solve);

• Parallel efficiency. Achieves 99% parallel efficiency for static mesh and

over 80% parallel efficiency for dynamic load balancing with adaptive

meshes (Flaherty et al.);
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• Provable cell entropy inequality and L2 stability, for arbitrary nonlinear

equations in any spatial dimension and any triangulation, for any

polynomial degrees, without limiters or assumption on solution

regularity (Jiang and Shu, Math. Comp. 94 (scalar case); Hou and Liu,

JSC 07 (symmetric systems)). For U(u) = u2

2
:

d

dt

∫

Ij

U(u)dx + F̂j+1/2 − F̂j−1/2 ≤ 0

Summing over j: d
dt

∫ b

a
u2dx ≤ 0.

This also holds for fully discrete RKDG methods with third order TVD

Runge-Kutta time discretization, for linear equations (Zhang and Shu,

SINUM 10).
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• At least (k + 1
2
)-th order accurate, and often (k + 1)-th order accurate

for smooth solutions when piecewise polynomials of degree k are

used, regardless of the structure of the meshes, for smooth solutions

(Lesaint and Raviart 74; Johnson and Pitkäranta, Math. Comp. 86

(linear steady state); Zhang and Shu, SINUM 04 and 06 (RKDG for

nonlinear equations)).

• (2k + 1)-th order superconvergence in negative norm and in strong

L2-norm for post-processed solution for linear and nonlinear

equations with smooth solutions (Cockburn, Luskin, Shu and Süli,

Math. Comp. 03; Ryan, Shu and Atkins, SISC 05; Curtis, Kirby, Ryan

and Shu, SISC 07; Ji, Xu and Ryan, JSC in review).
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• (k + 3/2)-th or (k + 2)-th order superconvergence of the DG solution

to a special projection of the exact solution, and non-growth of the

error in time up to t = O( 1√
h
) or t = O( 1

h
), for linear and nonlinear

hyperbolic and convection diffusion equations (Cheng and Shu, JCP

08; Computers & Structures 09; SINUM 10; Meng, Shu, Zhang and

Wu, SINUM to appear (nonlinear); Yang and Shu, SINUM to appear

((k + 2)-th order)).
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We consider the DG approximation to smooth solutions of one and two

dimensional conservation laws

ut + f(u)x = b(x, t), (3)

and

ut + f(u)x + g(u)y = b(x, y, t). (4)

We study the convergence and time evolution of the error between the DG

solution and the exact solution, as well as the error between the DG

solution and a particular projection of the exact solution.
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The main conclusion:

• The error between the DG solution and a particular projection of the

exact solution superconverges. For P k elements this error is at least

hk+1.5 and for some cases it can be hk+2 (half or one order higher

than usual).

• As a consequence, the error between the DG solution and the exact

solution does not grow with time, for a long time period

0 ≤ t ≤ O(h−0.5) or 0 ≤ t ≤ O(h−1).
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Related work:

• Adjerid et al. (CMAME 2002, 2006) proved superconvergence of the

DG solutions at Radau points for ordinary differential equations. They

have also made numerical experiments for the partial differential

equations.

• Zhang and Shu (Computers & Fluids 2005) explicitly give the

formulation of the DG solution in the case of P 1 (piecewise linear) for

the linear convection equation. The leading error term is shown to be

of a constant magnitude independent of the time t.
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Linear equations with constant coefficients

We consider the following equation















ut + ux = 0

u(x, 0) = u0(x)

u(0, t) = u(2π, t)

. (5)

Here, u0(x) is a smooth 2π-periodic function.

The assumption of periodic boundary condition is not essential, the same

results hold also for initial-boundary value problems.
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We define P−
h u to be a projection of u into V k

h , such that

∫

Ij

P−
h u vh dx =

∫

Ij

u vh dx (6)

for any vh ∈ P k−1 on Ij , where k is the polynomial degree of the DG

solution, and

(P−
h u)− = u− at xj+1/2. (7)
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Note: this special projection is used in the error estimates of the DG

methods to derive optimal L2 error bounds in the literature.

We are going to show that indeed the numerical solution is closer to this

special projection of the exact solution than to the exact solution itself.

Let us denote:

• e = u − uh to be the error between the exact solution and numerical

solution

• ε = u − P−
h u to be the projection error

• ē = P−
h u − uh to be the error between the numerical solution and

the projection of the exact solution.
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Theorem: Let u be the exact solution of the equation (5), and uh be the

DG solution with suitable initial condition. We have the following error

estimate:

||ē(·, t)||L2 ≤ C1 (t + 1) hk+2, (8)

and

||e(·, t)||L2 ≤ C1 t hk+2 + C2 hk+1, (9)

where C1 and C2 are constants which do not depend on t or h.
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Even though the theorem is stated for the simple scalar equation, the

same proof applies also to any linear hyperbolic system

ut + Aux = 0

where A is a constant matrix which is diagonalizable with real

eigenvalues. This is because the PDE as well as the DG scheme can be

diagonalized into decoupled scalar equations.
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Example 1. We solve the one dimensional equation















ut + ux = 0

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

. (10)

The errors ē and e using P 1 polynomials on a uniform mesh of N cells

are shown in Table 1. Notice that ē is superconvergent of order 3 and

grows linearly with t, while e is of order 2 but does not grow with time until

very large t.
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Table 1: Example 1, P 1 polynomials, uniform mesh

T = 1 T = 10 T = 100

N L2 error order L2 error order L2error order

ē

20 4.60E-04 - 3.04E-03 - 2.96E-02 -

40 5.80E-05 2.99 3.82E-04 2.99 3.79E-03 2.97

80 7.26E-06 3.00 4.79E-05 3.00 4.75E-04 2.99

160 9.08E-07 3.00 5.99E-06 3.00 5.95E-05 3.00

e

20 4.21E-03 - 5.16E-03 - 2.99E-02 -

40 1.06E-03 1.99 1.12E-03 2.20 3.93E-03 2.92

80 2.65E-04 2.00 2.69E-04 2.06 5.44E-04 2.85

160 6.64E-05 2.00 6.66E-05 2.02 8.91E-05 2.61
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The same result holds for the initial-boundary problem















ut + ux = 0

u(x, 0) = sin(x)

u(0, t) = sin(−t)

. (11)

See Table 2.
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Table 2: Initial-boundary value problem (11), P 1, uniform meshes.

T = 1 T = 10 T = 100

N L2 error order L2 error order L2error order

ē

20 4.74E-04 - 1.28E-03 - 1.06E-03 -

40 6.02E-05 2.98 1.60E-04 3.00 1.33E-04 3.00

80 7.57E-06 2.99 2.00E-05 3.00 1.65E-05 3.01

160 9.50E-07 3.00 2.50E-06 3.00 2.16E-06 2.93

e

20 4.22E-03 - 4.43E-03 - 4.37E-03 -

40 1.06E-03 1.99 1.07E-03 2.04 1.07E-03 2.03

80 2.65E-04 2.00 2.66E-04 2.01 2.66E-04 2.01

160 6.64E-05 2.00 6.64E-05 2.00 6.64E-05 2.00
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Example 2. We still solve the same equation as in the previous example

but with a different initial condition.














ut + ux = 0

u(x, 0) = esin(x)

u(0, t) = u(2π, t)

(12)

The initial condition is no longer a single mode. The result is the same as

before, in Table 3 for a random mesh.
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Table 3: Example 2. P 1 polynomials, random meshes.

T = 1 T = 10 T = 100

N L2 error order L2 error order L2error order

ē

20 2.05E-03 - 1.66E-02 - 1.08E-01 -

40 2.80E-04 2.87 2.32E-03 2.84 2.07E-02 2.38

80 3.43E-05 3.03 2.89E-04 3.01 2.83E-03 2.87

160 4.53E-06 2.92 3.67E-05 2.98 3.66E-04 2.95

e

20 6.79E-03 - 1.78E-02 - 1.08E-01 -

40 1.79E-03 1.92 2.88E-03 2.63 2.08E-02 2.37

80 4.31E-04 2.05 5.28E-04 2.45 2.87E-03 2.86

160 1.11E-04 1.95 1.17E-04 2.18 3.82E-04 2.91
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Example 2a. We solve the same problem















ut + ux = 0

u(x, 0) = esin(x)

u(0, t) = u(2π, t)

using P 2 and P 3. Similar results hold as before, in Tables 4 and 5 for

uniform meshes.
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Table 4: Example 2a. P 2 polynomials, uniform meshes.

T = 1 T = 100 T = 1000

N L2 error order L2 error order L2error order

ē

20 2.64E-05 - 1.22E-03 - 1.01E-02 -

40 1.59E-06 4.05 4.07E-05 4.90 4.02E-04 4.64

80 9.77E-08 4.03 1.29E-06 4.98 1.28E-05 4.97

160 6.08E-09 4.01 4.07E-08 4.98 4.02E-07 5.00

e

20 2.94E-04 - 1.25E-03 - 1.01E-02 -

40 3.67E-05 3.00 5.48E-05 4.51 4.04E-04 4.64

80 4.59E-06 3.00 4.77E-06 3.52 1.36E-05 4.89

160 5.74E-07 3.00 5.76E-07 3.05 7.01E-07 4.28
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Table 5: Example 2a. P 3 polynomials, uniform meshes.

T = 10 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

5 5.40E-03 - 2.86E-02 - 6.70E-02 -

10 8.70E-05 5.96 7.65E-04 5.22 3.24E-03 4.37

20 1.11E-06 6.30 7.50E-06 6.67 3.71E-05 6.45

40 2.61E-08 5.40 6.57E-08 6.84 3.04E-07 6.93

e

5 5.50E-03 - 2.89E-02 - 6.70E-02 -

10 2.09E-04 4.72 7.88E-04 5.19 3.24E-03 4.37

20 1.22E-05 4.09 1.43E-05 5.79 3.91E-05 6.38

40 7.65E-07 4.00 7.67E-07 4.22 8.22E-07 5.57
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Finally we consider the case of P 0. In this case, the projection P−
h can no

longer be defined. We compute e for Example 1 when N = 320 and list

the L2 errors in Table 6. Unlike the cases of P 1, P 2, and P 3, this time e

grows with respect to time even for fine grids.

Table 6: The error e for Example 1. P 0 polynomials, uniform meshes of

320 cells.

T L2 error

1 7.99E-03

10 6.62E-02

100 4.42E-01
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Linear equations with variable coefficients

Example 3. We solve the following equation














ut + (a(x)u)x = b(x, t)

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

, (13)

where a(x) and b(x, t) are given by

a(x) = sin(x) + 2,

b(x, t) = (sin(x) + 3) cos(x + t) + cos(x) sin(x + t).

Notice that a(x) > 0, we can still use the upwind fluxes. Similar (or even

better) results are observed, in Table 7.
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Table 7: Example 3. P 2 polynomials, uniform meshes.

T = 1 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

20 4.29E-06 - 4.19E-06 - 4.20E-06 -

40 2.64E-07 4.02 2.61E-07 4.00 2.62E-07 4.00

80 1.65E-08 4.00 1.63E-08 4.00 1.63E-08 4.00

160 1.03E-09 4.00 1.02E-09 4.00 1.02E-09 4.00

e

20 1.07E-04 - 1.07E-04 - 1.07E-04 -

40 1.34E-05 3.00 1.34E-05 3.00 1.34E-05 3.00

80 1.67E-06 3.00 1.67E-06 3.00 1.67E-06 3.00

160 2.09E-07 3.00 2.09E-07 3.00 2.09E-07 3.00
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Example 4. We solve the same equation















ut + (a(x)u)x = b(x, t)

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

,

where a(x) and b(x, t) are given by

a(x) = sin(x),

b(x, t) = (sin(x) + 1) cos(x + t) + cos(x) sin(x + t).

This time a(x) is no longer always positive, but we still use the upwind

flux.
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The projection Ph is defined as follows. If a(xj) > 0, then on the cell Ij ,

we use P−
h ; otherwise, we use P+

h , which is defined as the projection of u

into V k
h such that

∫

Ij

P+
h u vh dx =

∫

Ij

u vh dx

for any vh ∈ P k−1 on Ij and

(P+
h u)+ = u+ at xj−1/2.

Similar results are observed as before in Table 8.
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Table 8: Example 4. P 2 polynomials, uniform meshes.

T = 1 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

20 4.38E-05 - 9.73E-05 - 8.53E-05 -

40 3.96E-06 3.47 5.99E-06 4.02 9.30E-06 3.20

80 3.53E-07 3.49 4.11E-07 3.87 5.26E-07 4.14

160 3.13E-08 3.50 3.93E-08 3.38 4.12E-08 4.00

e

20 1.16E-04 - 1.27E-04 - 1.27E-04 -

40 1.40E-05 3.05 1.41E-05 3.17 1.54E-05 3.05

80 1.72E-06 3.03 1.75E-06 3.01 1.76E-06 3.13

160 2.12E-07 3.02 2.13E-07 3.04 2.16E-07 3.00
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Nonlinear equations

Example 5. We solve the following nonlinear equation















ut + (u3)x = b(x, t)

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

, (14)

where b(x, t) is given by

b(x, t) = (1 + 3 sin2(x + t)) cos(x + t).

Since f ′(u) = 3u2 ≥ 0, we can still use the upwind fluxes. Similar

results are achieved, in Table 9.
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Table 9: Example 5. P 2 polynomials, uniform meshes.

T = 1 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

20 5.40E-05 - 3.45E-05 - 3.53E-05 -

40 4.67E-06 3.53 3.02E-06 3.51 3.01E-06 3.55

80 3.22E-07 3.86 2.57E-07 3.56 2.57E-07 3.55

160 1.99E-08 4.02 1.91E-08 3.75 1.91E-08 3.75

e

20 1.12E-04 - 1.08E-04 - 1.08E-04 -

40 1.34E-05 3.07 1.33E-05 3.03 1.33E-05 3.03

80 1.65E-06 3.02 1.65E-06 3.01 1.65E-06 3.01

160 2.07E-07 3.00 2.07E-07 2.99 2.07E-07 2.99
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Example 6. We solve the following nonlinear Burgers equation















ut + (u2)x = b(x, t)

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

, (15)

where b(x, t) is given by

b(x, t) = (1 + 2 sin(x + t)) cos(x + t).

Now, f ′(u) is no longer always positive. We use the Godunov flux, which

is an upwind flux. The projection Ph is defined as follows. If u(xj, t) is

positive, then on the cell Ij , we use P−
h ; otherwise, we use P+

h . See

Table 10 for similar results as before.
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Table 10: Example 6. P 2 polynomials, uniform meshes.

T = 1 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

20 7.18E-05 - 8.97E-05 - 1.14E-04 -

40 7.56E-06 3.53 9.58E-06 3.23 9.03E-06 3.66

80 9.19E-07 3.04 8.84E-07 3.44 8.92E-07 3.34

160 7.76E-08 3.57 7.71E-08 3.51 7.84E-08 3.51

e

20 1.23E-04 - 1.37E-04 - 1.36E-04 -

40 1.48E-05 3.05 1.53E-05 3.16 1.54E-05 3.14

80 1.79E-06 3.05 1.81E-06 3.08 1.81E-06 3.09

160 2.16E-07 3.05 2.16E-07 3.00 2.16E-07 3.07
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One-dimensional systems

Example 7. We solve the following one dimensional system























































u

v





t

+





0 1

1 0









u

v





x

=





0

0





u(x, 0) = sin(x)

v(x, 0) = cos(x)

u(0, t) = u(2π, t)

v(0, t) = v(2π, t)

. (16)

We take the upwind flux and define the projection Ph according to the

wind directions. The results are similar to the scalar cases, in Table 11.
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Table 11: Example 7. P 2 polynomials, uniform meshes.

T = 1 T = 10 T = 100

N L2 error order L2 error order L2error order

ē

20 4.17E-06 - 5.13E-06 - 3.02E-05 -

40 2.62E-07 3.99 2.78E-07 4.21 9.74E-07 4.95

80 1.64E-08 4.00 1.66E-08 4.06 3.36E-08 4.86

160 1.02E-09 4.00 1.03E-09 4.02 1.37E-09 4.61

e

20 1.07E-04 - 1.07E-04 - 1.11E-04 -

40 1.34E-05 3.00 1.34E-05 3.00 1.34E-05 3.05

80 1.67E-06 3.00 1.67E-06 3.00 1.67E-06 3.00

160 2.09E-07 3.00 2.09E-07 3.00 2.09E-07 3.00
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Two-dimensional equations

Example 8. We solve the following equation






ut + ux + uy = 0

u(x, y, 0) = sin(x + y)
. (17)

Periodic boundary conditions are imposed on the boundary of the domain

[0, 2π]2. We use rectangular meshes and Qk elements. The results are

similar to the 1D case, in Table 12.
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Table 12: Example 8. Q1 elements, uniform meshes.

T = 1 T = 10 T = 100

N L2 error order L2 error order L2error order

ē

5 4.68E-02 - 2.81E-01 - 7.01E-01 -

10 6.64E-03 2.82 4.60E-02 2.61 3.46E-01 1.02

20 8.63E-04 2.94 6.04E-03 2.93 5.79E-02 2.58

40 1.09E-04 2.98 7.63E-04 2.99 7.56E-03 2.94

e

5 8.80E-02 - 2.86E-01 - 7.06E-01 -

10 2.34E-02 1.91 5.06E-02 2.50 3.47E-01 1.03

20 5.97E-03 1.97 8.42E-03 2.59 5.82E-02 2.57

40 1.50E-03 1.99 1.68E-03 2.33 7.70E-03 2.92
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We can extend the result to the linear convection-diffusion equation















ut + cux = buxx

u(x, 0) = u0(x)

u(0, t) = u(2π, t).

(18)

The LDG scheme for (18) uses the same mesh and approximation space

as in the hyperbolic case and is formulated based on rewriting (18) into






ut + cux = aqx

q − aux = 0.
(19)

Here a =
√

b.
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The scheme is, find uh, qh ∈ V k
h , such that

∫

Ij

(uh)tvhdx −
∫

Ij

cuh(vh)xdx + cũhv
−
h |j+ 1

2
− cũhv

+
h |j− 1

2

+

∫

Ij

aqh(vh)xdx − aq̂hv
−
h |j+ 1

2
+ aq̂hv

+
h |j− 1

2
= 0, (20)

∫

Ij

qhwhdx +

∫

Ij

auh(wh)xdx − aûhw
−
h |j+ 1

2
+ aûhw

+
h |j− 1

2
= 0

hold for any vh, wh ∈ V k
h , where ũh is the upwind flux depending on the

sign of c. Without loss of generality we assume c ≥ 0 and ũh = u−
h . The

alternating diffusion fluxes are taken as

q̂h = q+
h , ûh = u−

h . (21)
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Theorem: If k ≥ 1, let u, q = ux be the exact solution of the convection

diffusion equation (18) when c > 0 and ũh = u−
h , and uh, qh be the LDG

solution. We define Phu = P−
h u, Phq = P+

h q, and we choose the initial

condition as uh(·, 0) = P 1
hu0. Then we have the following error estimate:

||ēu(·, t)||2L2 +

∫ t

0

||ēq(·, s)||2L2 ds ≤ Ch2k+3(t + 1)2,

and in particular

||ēu(·, t)||L2 ≤ Chk+3/2(t + 1).

where C = C(||u||k+5, λ, a/c).
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Example 9. We solve the heat equation















ut = uxx

u(x, 0) = sin(x)

u(0, t) = u(2π, t).

Division of Applied Mathematics, Brown University



SUPERCONVERGENCE AND LONG TIME EVOLUTION OF DG METHOD

Table 13: Example 9, P 0 polynomials, uniform mesh, T = 1.

eu eu(xj)

N L
2 error order L

2error order

10 4.76E-02 - 4.19E-03 -

20 2.36E-02 1.01 1.06E-03 1.98

40 1.18E-02 1.00 2.67E-04 1.99

80 5.90E-03 1.00 6.68E-05 2.00

eq e
+
q (xj−1/2)

10 1.55E-01 - 1.20E-03 -

20 4.71E-02 0.99 1.93E-04 2.64

40 2.36E-02 1.00 8.22E-06 4.55

80 1.02E-02 1.00 1.02E-07 6.33
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Table 14: Example 9, P 1 polynomials, uniform mesh, T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

10 6.28E-03 - 1.04E-03 - 9.82E-05 -

20 1.56E-03 2.01 1.29E-04 3.00 5.93E-06 4.05

40 3.91E-04 2.00 1.62E-05 3.00 3.68E-07 4.01

80 9.77E-05 2.00 2.02E-06 3.00 2.29E-08 4.00

eq ēq e
+
q (xj−1/2)

10 6.35E-03 - 5.32E-04 - 9.22E-04 -

20 1.57E-03 2.02 6.51E-05 3.03 1.13E-04 3.03

40 3.91E-04 2.00 8.10E-06 3.01 1.40E-05 3.01

80 9.77E-05 2.00 1.01E-06 3.00 1.75E-06 3.00
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Table 15: Example 9, P 2 polynomials, uniform mesh, T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

10 3.15E-04 - 2.53E-05 - 3.62E-06 -

20 3.94E-05 3.00 1.55E-06 4.03 1.11E-07 5.03

40 4.92E-06 3.00 9.65E-08 4.01 3.46E-09 5.01

80 6.15E-07 3.00 6.03E-09 4.00 1.08E-10 5.00

eq ēq e
+
q (xj−1/2)

10 3.15E-04 - 2.51E-05 - 4.73E-07 -

20 3.94E-05 3.00 1.55E-06 4.02 8.29E-09 5.84

40 4.92E-06 3.00 9.65E-08 4.00 8.90E-11 6.54

80 6.15E-07 3.00 6.03E-09 4.00 1.17E-12 6.25
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Table 16: Example 9, P 3 polynomials, uniform mesh, T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

5 1.93E-04 - 2.08E-05 - 1.78E-07 -

10 1.21E-05 3.99 6.37E-07 5.03 5.15E-10 8.43

20 7.60E-07 4.00 1.98E-08 5.01 2.13E-12 7.92

eq ēq e
+
q (xj−1/2)

5 1.93E-04 - 2.08E-05 - 1.02E-06 -

10 1.21E-05 3.99 6.37E-07 5.03 7.31E-09 7.13

20 7.60E-07 4.00 1.98E-08 5.01 5.60E-11 7.03

Division of Applied Mathematics, Brown University



SUPERCONVERGENCE AND LONG TIME EVOLUTION OF DG METHOD

Our numerical results show that all the aforementioned errors decay

exponentially with respect to time, see Figure 1.
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Figure 1: Example 9, errors versus time when using P 1 polynomials on a

uniform mesh of 20 cells. Squares: eu; Diamonds: ēu; Circles: eq; Right

Triangles: ēq.
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As expected by theory, the superconvergence result holds also for

non-uniform meshes. In the next table, we list the errors and orders for a

non-uniform mesh which is a 10% random perturbation of the uniform

mesh. We can see that all the conclusions for uniform meshes also hold

true for this non-uniform mesh.
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Table 17: Example 9, P 1 polynomials, random mesh, T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

10 6.94E-03 - 1.02E-03 - 1.81E-04 -

20 1.61E-03 2.10 1.43E-04 2.84 9.52E-06 4.25

40 4.07E-04 1.99 1.76E-05 3.02 6.53E-07 3.87

80 1.09E-04 1.90 2.30E-06 2.94 4.20E-08 3.96

eq ēq e
+
q (xj−1/2)

10 6.15E-03 - 6.97E-04 - 1.05E-03 -

20 1.64E-03 1.90 7.66E-05 3.19 1.18E-04 3.15

40 4.07E-04 2.01 9.57E-06 3.00 1.47E-05 3.00

80 1.09E-04 1.90 1.23E-06 2.96 1.97E-06 2.90
Division of Applied Mathematics, Brown University



SUPERCONVERGENCE AND LONG TIME EVOLUTION OF DG METHOD

Example 10. We solve the convection-dominated problem















ut + ux = 0.01uxx

u(x, 0) = sin(x)

u(0, t) = u(2π, t).

(k + 2)-th order superconvergence are obtained for ēu, ēq and the point

errors u− and q+. The only difference is that we now need a more refined

mesh to observe superconvergence for ēq.
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Table 18: Example 10, P 1 polynomials, uniform mesh. T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

10 1.64E-02 - 3.47E-03 - 4.78E-03 -

20 4.18E-03 1.97 4.37E-04 2.99 5.82E-04 3.04

40 1.05E-03 1.99 5.38E-05 3.02 6.61E-05 3.14

80 2.63E-04 2.00 6.63E-06 3.02 7.13E-06 3.21

eq ēq e
+
q (xj−1/2)

160 4.17E-06 - 4.11E-06 - 7.06E-06 -

320 1.20E-06 1.79 6.40E-07 2.68 1.10E-06 2.68

640 3.43E-07 1.81 9.13E-08 2.81 1.57E-07 2.81

1280 9.33E-08 1.88 1.23E-08 2.89 2.11E-08 2.89
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Table 19: Example 10, P 2 polynomials, uniform mesh. T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

10 8.43E-04 - 7.16E-05 - 3.12E-05 -

20 3.94E-05 3.00 1.40E-06 3.89 1.48E-07 4.92

40 4.92E-06 3.00 9.17E-08 3.93 4.75E-09 4.96

80 6.15E-07 3.00 5.87E-09 3.96 1.51E-10 4.98

eq ēq e
+
q (xj−1/2)

160 1.68E-08 - 1.58E-08 - 1.10E-08 -

320 2.18E-09 2.95 1.14E-09 3.79 4.50E-10 4.61

640 2.92E-10 2.90 7.46E-11 3.93 1.58E-11 4.83

1280 3.83E-11 2.93 2.97E-12 4.65 4.48E-13 5.14
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Table 20: Example 10, P 3 polynomials, uniform mesh. T = 1.

eu ēu e
−
u (xj+1/2)

N L
2 error order L

2 error order L
2error order

5 5.24E-04 - 7.53E-05 - 9.75E-05 -

10 3.36E-05 3.96 2.48E-06 4.93 1.88E-06 5.70

20 2.05E-06 4.04 4.47E-08 5.79 4.97E-08 5.24

40 1.28E-07 3.98 1.24E-09 5.17 1.86E-09 4.74

eq ēq e
+
q (xj−1/2)

80 6.19E-10 - 6.12E-10 - 5.07E-10 -

160 4.07E-11 3.93 2.59E-11 4.56 8.31E-12 5.93

320 2.74E-12 3.89 9.29E-13 4.80 9.00E-14 6.53
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Example 11. We solve the following equation














ut + (u2)x = (b(u)ux)x + c(x, t)

u(x, 0) = sin(x)

u(0, t) = u(2π, t)

with

b(u) = u4,

c(x, t) = −e−5t(e4t cos(t − x) − e4t sin(t − x)

−4 cos2(t − x) sin3(t − x) + sin5(t − x) + e3t sin(2(t − x)))

This is a convection diffusion equation which is nonlinear in both

convection and diffusion, and the wind direction for the convection term

changes sign.
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We use the Godunov flux for the convection term, and the alternating

fluxes for the diffusion fluxes. The numerical traces are

w1 = û2
h −

[g(uh)]
[uh]

q+
h and w2 = g(u−

h ). The errors for w1 and w2 are

ew1 = w1 − u2 + a(u)q = w1 − u2 + u4ux and

ew2 = w2 − g(u) = w2 − u3/3. The results are listed in the next table.

We clearly observe (k + 2)-th order superconvergence for both numerical

traces.
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Table 21: Example 11 on a uniform mesh of N cells. T = 1.

eu eq ew1
(xj+1/2) ew2

(xj+1/2)

P1

N L2 error order L2 error order L2err or order L2error order

20 1.47E-03 - 2.50E-03 - 2.96E-04 - 2.31E-04 -

40 3.42E-04 2.10 9.96E-04 1.33 3.74E-05 2.98 4.51E-05 2.35

80 8.36E-05 2.03 3.58E-04 1.48 5.04E-06 2.89 8.08E-06 2.48

P2

N L2 error order L2 error order L2error order L2error order

10 5.26E-04 - 3.24E-04 - 2.33E-04 - 6.10E-05 -

20 5.99E-05 3.13 5.71E-05 2.51 2.50E-05 3.22 5.57E-06 3.45

40 6.05E-06 3.31 9.60E-06 2.57 1.28E-06 4.29 3.77E-07 3.88

80 6.73E-07 3.17 1.68E-06 2.52 7.03E-08 4.18 2.87E-08 3.71

P3

N L2 error order L2 error order L2error order L2error order

5 4.07E-04 - 3.78E-04 - 1.23E-04 - 3.15E-05 -

10 1.61E-05 4.66 3.18E-05 3.57 4.59E-06 4.74 2.39E-06 3.72

20 7.42E-07 4.44 2.51E-06 3.66 7.80E-08 5.88 8.38E-08 4.84

40 4.43E-08 4.07 1.99E-07 3.66 2.50E-09 4.96 2.63E-09 4.99

Division of Applied Mathematics, Brown University



SUPERCONVERGENCE AND LONG TIME EVOLUTION OF DG METHOD

Conclusion and future work

• The DG solution is superconvergent when measured by its distance to

a special projection of the exact solution.

• As a consequence, the usual L2 error of the DG solution does not

grow with time for a “long” time, typically 0 ≤ t ≤ O(h−1) and at

least 0 ≤ t ≤ O(h−0.5).

• The conclusion holds true for very general cases: non-uniform

meshes, variable coefficient PDEs, nonlinear PDEs, systems, 2D, with

possible change of wind directions, and also for other norms

measuring the error (L1, L∞, etc.). The proof is given for linear and

certain nonlinear PDEs in L2 norm.
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• Future work:

– Proof for more general cases.

– More general PDEs: KdV, ...

– Applications: use it in adaptive computation.
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The End

THANK YOU!
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