Aircraft Noise Simulation at DLR

Roland Ewert

DLR Institute of Aerodynamics and Flow Technology Technical Acoustics

CEAA 2012, Svetlogorsk, Russia, 18.09.-23.09.2012

Knowledge for Tomorrow

Outline

- Aeroacoustic problems tackled at DLR Braunschweig
- Overview of simulation approaches
- Surface integral methods
 - Fast Multipole BEM tool
 - Influence of simplified propagation physics
 - Volume discretization approach
 - Direct noise computation (DNC)
 - RANS based modeling of AFN with stochastic sound sources
 - DGM for aeroacoustic simulations

www.DLR.de • Chart 3 R. Ewert > Aircraft Noise Simulation at DLR > 21.09.2012

Sources of exterior noise at aircraft

Re-Number of order 10mio!

Sources of interior noise at aircraft

Aeroacoustic Simulation Paths of simulations in Computational Aeroacoustics (CAA) DLR FW-H Code APSIM+ CAA DLR CAA Code PIANO Direct Hybrid methods methods Computational CFD Sound propagation generation analysis method Reconstructed Resolved Volume Surface sources sources discretization discretization **RANS+stochastic** (DNS, LES, DES) DNC statistic methods Non-linear perturbation Linearized Acoustic equations (NLPE) Euler Perturbation Wave FW-H **Kirchhoff** Equations Equations equations integral integral (LEE) (APE) Volume discretization, moving medium Simplified propagation physics

FW-H becomes FW-H + BEM if unsteady surface data is not available on the entire surface

Solid surface important for acoustic propagation but not included in FW-H surface integral -> BEM Integral

Sound radiated from FW-H surface wrapped around limited region of turbulence

Assumed configuration: Surface data of pressure and acoustic particle velocity not available on entire surface

Boundary Element Method

- → Solution of the (Helmholtz) wave equation
- Integral equation for the surface pressure: Burton/Miller formulation with wall admittance Y

$$[1+\alpha Y]\frac{p(x)}{2} - \int p(y) \left[1+\alpha \frac{\partial}{\partial n_x}\right] \left[\frac{\partial}{\partial n_y} - Y\right] G(x-y) d\Omega_y = \left[1+\alpha \frac{\partial}{\partial n_x}\right] p_{Inc}(x)$$

- → Very large system of linear equations
 - → Six elements per wave length necessary
- → Direct solver (e.g. Gauss procedure)
 - ✓ Matrix is full, complex, and non-symmetric
 - → Extremely expensive for higher frequencies (i.e. > 1 kHz)
- → Iterative solver
 - → No storage of matrix required
 - Fast matrix vector multiplication is necessary
 - → Fast Multipole Method (FMM) is method of choice

www.DLR.de • Chart 9

Boundary Element Method - Memory

- \neg 6 elements per wave length λ
- → Number of triangle elements N, Surface A

$$N \approx 6^2 \frac{A}{\lambda^2}$$

- **7** A340: $A \approx 2250m^2$
- \neg 341 Hz, *N* ≈ 8.1×10⁴
- **7 2800 Hz**, *N* ≈ 5.46×10⁶
 - \neg Matrix Elements: 2.982×10¹³
 - \neg Single precision storage: 2.385×10¹⁴ Bytes, ca. 240 TB Memory
 - \neg Also working memory needed ...
 - → Tianhe-1A-NUDT (2 of TOP500) has about 230 TB Memory ...

Fast Multipole Method

- → Iterative solution of BEM equation
- \neg Acceleration of matrix-vector product from O(N^2) to O(N log(N))
 - → Splitting of every row of product into near and far field terms
 - → Calculation of far field interactions by a series expansion
 - Far field contributions are collected and distributed over an Octree covering the geometry
- → Example: Full scale aircraft (surface 582 m^2)
 - → 2170000 Triangles
 - \neg Wavelength 0.1 m (3410 Hz)
 - 7 48 GB total memory (4 nodes)
 - → 150s for one iteration step on 32 cores (Opteron 2.7 GHz)
 - → 200 iteration steps (conjugate residual method)

F6OR Configuration Front rotor installation effect

- → 50,000 Surface Triangles
- → FMM + CROR Model

B_f=10

Source: uRANS Sound: FMM BEM

F6OR Configuration Interaction Harmonics 50,000 Surface Triangles 7 FMM + CROR Model 7 $B_f + B_a = 18$

Source: uRANS

Sound: FMM BEM

Importance of acoustic propagation effects Installation effect on fan tones at High Lift Wing

Slat Noise Simulations

Extension to unstructured CAA, 30P30N high-lift airfoild

- PIANO code of DLR based on structured multiblock (SMB) meshes + 0.6 finite differences 0.4 Dispersion Relation 0.2 Preserving (DRP) > 0 scheme (Tam & Webb -0.2 1993) -0.4
- LEE, APE, NLEE, NLPE0.6
- Simplified mesh generation based on unstructured meshes with high-order methods Discontinuous Galerkin methods for CAA (Bauer et al. 2011 LEE and APE

Development of Direct Noise Computation (DNC) capability

Governing equations

- Navier-Stokes equations in primitive variable notations

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0, \\ &\frac{\partial\boldsymbol{v}}{\partial t} + (\boldsymbol{v}\cdot\nabla)\boldsymbol{v} + \frac{\nabla p}{\rho} &= \frac{\nabla \cdot \boldsymbol{\tau}}{\rho}, \\ &\frac{\partial p}{\partial t} + \boldsymbol{v}\cdot\nabla p + \gamma p \nabla \cdot \boldsymbol{v} &= (\gamma - 1)(\boldsymbol{\tau}\cdot\nabla) \cdot \boldsymbol{v} - (\gamma - 1)\nabla \cdot \mathbf{q}. \end{split}$$

Flow field decomposition into a steady and fluctuating part

$$\rho=\rho^0+\rho',\quad \upsilon=\upsilon^0+\upsilon',\quad p=p^0+p',\quad \tau=\tau^0+\tau',\quad \mathbf{q}=\mathbf{q}^0+\mathbf{q}'\,.$$

Development of Direct Noise Computation (DNC) capability

- Viscous PENNE(*) equations with steady base flow ("NLPE") (**)

$$\begin{split} \frac{\partial \rho'}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \rho' + \boldsymbol{v}' \cdot \boldsymbol{\nabla} \rho^{0} + \rho \boldsymbol{\nabla} \cdot \boldsymbol{v}' + \rho' \boldsymbol{\nabla} \cdot \boldsymbol{v}^{0} = r_{1}^{0}, \\ \frac{\partial \boldsymbol{v}'}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}' + (\boldsymbol{v}' \cdot \boldsymbol{\nabla}) \boldsymbol{v}^{0} + \frac{\rho'}{\rho} (\boldsymbol{v}^{0} \cdot \boldsymbol{\nabla}) \boldsymbol{v}^{0} + \frac{\boldsymbol{\nabla} p'}{\rho} = \frac{\boldsymbol{\nabla} \cdot \boldsymbol{\tau}'}{\rho} + \frac{\rho^{0}}{\rho} r_{2}^{0}, \\ \frac{\partial p'}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} p' + \boldsymbol{v}' \cdot \boldsymbol{\nabla} p^{0} + \gamma p \boldsymbol{\nabla} \cdot \boldsymbol{v}' + \gamma p' \boldsymbol{\nabla} \cdot \boldsymbol{v}^{0} = \\ (\gamma - 1) [(\boldsymbol{\tau}' \cdot \boldsymbol{\nabla}) \cdot \boldsymbol{v} + (\boldsymbol{\tau}^{0} \cdot \boldsymbol{\nabla}) \cdot \boldsymbol{v}' - \boldsymbol{\nabla} \cdot \mathbf{q}'] + r_{3}^{0} \end{split}$$

with residual turbulent viscous and heat fluxes

$$\begin{array}{lll} r_1^0 &=& 0\,, \\ r_2^0 &=& -\frac{{\boldsymbol \nabla}\cdot {\boldsymbol \tau}^{t0}}{\rho^0}\,, \\ r_3^0 &=& -(\gamma-1) \big[({\boldsymbol \tau}^{t0}\cdot {\boldsymbol \nabla})\cdot {\boldsymbol v}^0 - {\boldsymbol \nabla}\cdot {\bf q}^{t0} \big]\,. \end{array}$$

(*) PENNE = Perturbed Nonconnservative Nonlinear Equations, L. N. Long. *AIAA Paper 2000-1998*, 2000. (**) primitive variables approach of NLDE (Morris et al., JCP 133, 1997; Terracol, Flow, Turb. & Comb, 77, 2006)

 $u^0 = v^0 = w^0 = 0$ (from RANS background flow simulation)

u' = v' = w' = 0 (to be enforced at end of each time step)

Development of Direct Noise Computation (DNC) capability

- Adiabatic boundary condition

For an adiabatic wall, heat flux through the wall must be zero, i.e.

 $\vec{q}\cdot\vec{n} \ = \ 0 \, .$

The thermal equation of state reads

$$\frac{dp}{p} - \frac{d\rho}{\rho} = \frac{dT}{T}.$$

After decomposition and rearrangement

$$\frac{\partial \rho'}{\partial n} = n_j \frac{\partial \rho'}{\partial x_j} = -n_j \left[-\frac{\rho}{p} \frac{\partial p'}{\partial x_j} - \frac{\rho'}{p} \frac{\partial p^0}{\partial x_j} + \frac{p'}{p} \frac{\partial \rho^0}{\partial x_j} \right],$$

$$\rho_{i,-1,k}' = \frac{1}{c_0} \left\{ -\sum_{m=0}^5 c_{m+1} \rho_{i,m,k}' + \left[\frac{\partial \rho'}{\partial n} - \sum_{l=1}^3 n_l \left(J_{1l} \frac{\partial \rho'}{\partial \xi} + J_{3l} \frac{\partial \rho'}{\partial \zeta} \right) \right] / \sum_{l=1}^3 n_l J_{2l} \right\}.$$

Development of Direct Noise Computation (DNC) capability

CAA simulation of flow around a circular cylinder, Re=150, M=0.1, 0.2, and 0.3(*)

Development of Direct Noise Computation (DNC) capability

Numerical verification for circular cylinder simulation

Time development of vorticity filed for Re = 150, M = 0.2 (left), M = 0.3 (right).

Development of Direct Noise Computation (DNC) capability

Time development of pressure fluctuation for Re = 150, M = 0.2 (left), M = 0.3 (right), St=0.176 (M=0.1), St=0.185 (M=0.2), St=0.190 (M=0.3) (Inoue: M=0.2, St=0.185)

Development of Direct Noise Computation (DNC) capability

CAA simulation of flow around a circular cylinder

General motivation of stochastic noise modeling

Estimation of computational cost for A380 take-off/landing configuration

Attached boundary layer flow with separation on flap of a wing at high-lift "approximated" by flow over a backward facing step.

LES with wall-functions Surface: 0.38m x 0.05m

Cost:10⁶s on single CPU (= 20days)

General motivation of stochastic noise modeling

Need for fast design-to-noise simulation tools for turbulence related noise generation

- Tools need for the fast simulation of turbulence related broadband noise (BBN) for aeroacoustic design purposes (design-to-noise) in an industrial environment
- Short turnaround times needed
- 'First principle based method' needed, which is applicable to small standard variations but also to new designs
- Reynolds Averaged Navier-Stokes (RANS) equations standard tool in aerodynamics today
- Scale resolving simulation (DNC, DNS, LES, DES+FW-H) useful to study noise and understand new noise source mechanism but still too expensive for aeroacoustic design purposes today and in the near future
- In the meantime need for a RANS equivalent in CAA for BBN predictions

Example: slat setting variation: impact on aerodynamics and <u>noise</u>

Pos. C

Stochastic noise prediction methods at DLR

Statistical Noise Theory (SNT)

Two-point cross-correlatiion function and sound spectrum

This one is modeled empirically, i.e. based on measured shapes

$$imes \left\langle q_{s}\left(x_{1},t
ight)q_{s}\left(x_{1}+r,t+ au
ight)
ight
angle e^{i\omega au}\mathrm{d} au\,\mathrm{d}^{3}x_{1}\mathrm{d}^{3}r$$

Two-point cross-correlation of turbulent source

Statistical Noise Theory as the Basis of Stochastic Source Models

Historical Overview

Stochastic Methods: SNT solved in time w. state-of-the-art CAA

Principle

Solve acoustic analogy with fluctuating source in the time domain

Acoustic propagation (wave operator)
$$p' = q_s$$

- Sample pressure data and compute sound spectra
- Sound spectrum corresponds to that of SNT if
 - acoustic propagation model is the same
 - two-point cross-correlation model is identical

'Don't believe it! Prove it to me!!!!!'

Stochastic Methods in CAA

Historical Overview

 \wedge

2012	Cozza et al.	\rightarrow ESDF, cross-correlation method
2011	Dieste & Gabard	\rightarrow Cyclostationary turbulence, <i>RPM</i>
2011	Casalino et al.	→ SNGR type of model applied to NACA0012 trailing edge noise
2010	Dieste & Gabard	→ Evolving turbulence model, RPM
2009	Siefert & Ewert	\rightarrow Sweeping evolving turbulence model and faster filter for <i>FRPM</i>
2009	Dieste & Gabard	\rightarrow Random particle method, cross-correlation model
2007	Ewert	Fast Random Particle-Mesh Method (FRPM) (increased efficiency)
2006	Ewert	→ Random Particle-Mesh Method (<i>RPM</i>) - cross-correlation model for CAA
2005	Ewert et al.	ightarrow SDF, first stochastic cross-correlation model for CAA
2004	Bauer et al.	\rightarrow SNGR trailing edge noise prediction operational
2003	Billson et al.	\rightarrow Langevin equation based evolving turbulence for SNGR
2000	Kallitzin et al.	\rightarrow Attempt to model trailing edge noise with SNGR
1996	Bailly et al.	→ Stochastic Noise Generation and Radiation (SNGR) approach – Fourier space based
1994	Bechara et al.	\rightarrow Fourier space based approach for CAA
÷	÷	÷
1970	Kraichnan	\rightarrow Spatial Fourier mode model in moving frame

DLF

(F)RPM synthetic turbulence generator of DLR

2-D Test problem and comparison FRPM vs. analytical solution

- Verification of FRPM with analytical solution and absolute levels
- CAA-Domain: u₀=0 (sound propagation in medium at rest)
- FRPM Patch: u_c=0.5
 - Source variance distribution defined by cosine function

Attila Wohlbrandt

- Tam & Auriault source model with exponential temporal decorrelation
- Comparison with analytical far-field spectrum

Source patch with source distribution

2-D Test Problem, FRPM based Solution

Evaluation of FRPM cross-correlation

Attila Wohlbrandt

Slat noise and slat noise reduction measures

1. Slat-cove cover (filler) to reduce kin. energy of turbulence at the TE

2. Determine low noise slat setting with acceptable loss in lift

Slat cove filler effect on broadband noise (German national project FREQUENZ)

Narrow Band Spectra theta=287° (below airfoil)

www.DLR.de • Page 37 R. Ewert > Aircraft Noise Simulation at DLR > 21.09.2012

Airframe noise of high lift airfoil 30P30N

Slat Noise Simulations

Further predictions, 30P30N high-lift airfoild

- Reynolds number effect (Re=1.7e6 vs. 10e6, Aeronext)
- Extension of CAA simulation capability to unstructured meshes (DG)
- Comparison with scale resolving simulation
- 3-D Sweep effect
- Validation with low Re-number measurements (EU Valiant, Re=7e5)
- Validation with high Re-number measurements (OPENAIR, FTEG, Re=5e6)
- Source anisotropy and modeling effects
- Understanding of source mechanisms?

Re-no. effect on Cp distribution from RANS

CAA predicted effect on spectrum and comparison with model spectrum of Guo

Practical application of the DGM

McDonnell Douglas (now Boeing) 30P30N profile

Slat noise of 30P30N high-lift airfoil configuration [Bauer 2011]

 $L = 0.46 \text{ m}, Ma_{\infty} = 0.17, Re \approx 1\ 700\ 000, \alpha = 4^{\circ}$ spatial discretization of APE (2D) through a DGM using Lagrange polynomials of degree p=3unstructured, triangular DG grid: $E = 58.774, f_{limit} \approx 15 \text{ kHz}$:

Advantages:

- > **local** grid refinement
- automatic generation
 (e.g. with CENTAUR)
- > no grid singularities

Seite 40

MD (Boeing) 30P30N profile

good agreement between 1 and 10 kHz, similar trend

 potential reasons for deviations: vortex shedding from blunt slat upper TE (TU Berlin)
 Bauer 2012 & Dierke 2010, Aeronext (LuFo, German)

flow: TAU / sound: DISCO

good agreement, all approaches predict minima under $\theta \approx 0^\circ$ and $\theta \approx 225^\circ$

Efficiency of slat noise simulations, DGM vs. PIANO, single processor tests

- comparison of computation times DG Method (DISCO) \Leftrightarrow FD Method (PIANO):
 - same settings in PIANO and DISCO:
 - 300.000 time steps, $dt = 1.0E-04 \rightarrow t_{end} = 30$
 - single 2.8 GHz processor, compilers: gfortran, Intel
 - grids: 653 776 points (PIANO), 587 740 nodes (DISCO)

 DG method practically as efficient as finite-difference method (PIANO) on single processor

Bauer 2012

Seite 4

Slat Noise Simulations

Spectral results of stochastic results of slat case VALIANT vs. measurement*

- No tripping of high-lift model in experiments
- Experimental spectra show distinct tones
- BBN noise trends well captured
- captured 편 - But: tones not captured by 成 BBN stochastic approach
- Characteristic slat noise spectrum of Guo (BBN) (black curve):

 $F(f,M) = \frac{M^2 c_s}{c_0} \frac{St^2}{(1+\mu_0^2 St^2)(1+\mu_1^2(1+M)^2 St^2)(1+\mu_2^2 M^2 St^2)(1+\mu_3 M St)}$

$$\mu_1 = 0.26, \ \ \mu_2 = 1.0399, \ \mu_3 = 1.78 \ \text{and} \ \ \mu_4 = 2.2.$$

- Discussion of the different numerical approaches applied at DLR
- Surface integral methods based on FW-H integrals include simplified propagation physics
 - If not all parts of the airframe are entirely wrapped-up -> BEM Problem
 - Efficient realization (general simulation capability) for realistic airframe sizes and interesting frequencies via Fast Multipole BEM
 - Non-uniform flow effects sometimes important -> volume resolving CAA methods necessary for resolving them
- DNC simulation capability based on DRP scheme and NLPE formulation currently implemented and tested
- Design (fast prediction) methods implemented based on linear perturbation equations (APE) plus stochastic sound sources
- For high-lift systems gives qualitatively good prediction of broadband spectra comparable with measurements and scale resolving simulation
- Stochastic tools provide only broadband part of spectra (no tones)
- DGM promising tool for acoustic propagation purposes based on linear governing equations

www.DLR.de • Chart 44

Thank you for your attention!

Thank you for your attention!

